Acceleration and stabilization properties of minimal residual smoothing technique in multigrid

被引:1
作者
Zhang, J [1 ]
机构
[1] Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55455 USA
关键词
minimal residual smoothing; multigrid method; two-level method; conjugate gradient-type methods; convergence acceleration;
D O I
10.1016/S0096-3003(98)00029-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the standard multigrid method accelerated by a minimal residual smoothing (MRS) technique. We show that MRS can accelerate the convergence of the slow residual components, thus accelerates the overall multigrid convergence. We prove that, under certain hypotheses, MRS stabilizes the divergence of certain slow residual components and thus stabilizes the divergent multigrid iteration. The analysis is customarily conducted on the two-level method. (C) 1999 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:151 / 168
页数:18
相关论文
共 39 条
[31]   Acceleration of five-point red-black Gauss-Seidel in multigrid for Poisson equation [J].
Zhang, J .
APPLIED MATHEMATICS AND COMPUTATION, 1996, 80 (01) :73-93
[32]  
Zhang J, 1998, NUMER METH PART D E, V14, P263, DOI 10.1002/(SICI)1098-2426(199803)14:2<263::AID-NUM8>3.0.CO
[33]  
2-M
[34]  
Zhang J., 1997, THESIS G WASHINGTON
[35]  
Zhang J., 1997, Numerical Methods for Partial Differential Equations: An International Journal, V13, P77, DOI 10.1002/(SICI)1098-2426(199701)13:1andlt
[36]  
77::AID-NUM6andgt
[37]  
3.0.CO
[38]  
2-J
[39]   RESIDUAL SMOOTHING TECHNIQUES FOR ITERATIVE METHODS [J].
ZHOU, L ;
WALKER, HF .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1994, 15 (02) :297-312