Following a moving target - Monte Carlo inference for dynamic Bayesian models

被引:432
作者
Gilks, WR
Berzuini, C
机构
[1] Univ Forvie Site, Inst Publ Hlth, MRC, Biostat Unit, Cambridge CB2 2SR, England
[2] Univ Pavia, I-27100 Pavia, Italy
关键词
Bayesian inference; dynamic model; hidden Markov model; importance resampling; importance sampling; Markov chain Monte Carlo methods; particle filter; predictive model selection; sequential imputation; simulation tracking;
D O I
10.1111/1467-9868.00280
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Markov chain Monte Carlo (MCMC) sampling is a numerically intensive simulation technique which has greatly improved the practicality of Bayesian inference and prediction. However, MCMC sampling is too slow to be of practical use in problems involving a large number of posterior (target) distributions, as in dynamic modelling and predictive model selection. Alternative simulation techniques for tracking moving target distributions, known as particle filters, which combine importance sampling, importance resampling and MCMC sampling, tend to suffer from a progressive degeneration as the target sequence evolves. We propose a new technique, based on these same simulation methodologies, which does not suffer from this progressive degeneration.
引用
收藏
页码:127 / 146
页数:20
相关论文
共 26 条
  • [21] CENTRAL LIMIT-THEOREM FOR A SYSTEM OF MARKOVIAN PARTICLES WITH MEAN FIELD-INTERACTIONS
    SHIGA, T
    TANAKA, H
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 69 (03): : 439 - 459
  • [22] BAYESIAN STATISTICS WITHOUT TEARS - A SAMPLING RESAMPLING PERSPECTIVE
    SMITH, AFM
    GELFAND, AE
    [J]. AMERICAN STATISTICIAN, 1992, 46 (02) : 84 - 88
  • [23] Spiegelhalter D., 1995, MARKOV CHAIN MONTE C
  • [24] SUTHERLAND AI, 1994, 943 U GLASG DEP STAT
  • [25] TIERNEY L, 1994, ANN STAT, V22, P1701, DOI 10.1214/aos/1176325750
  • [26] WEST M, 1993, P 24 S COMP SCI STAT, P325