On the "degrees of freedom" of the lasso

被引:626
作者
Zou, Hui [1 ]
Hastie, Trevor
Tibshirani, Robert
机构
[1] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
[2] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
关键词
degrees of freedom; LARS algorithm; lasso; model selection; SURE; unbiased estimate;
D O I
10.1214/009053607000000127
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the effective degrees of freedom of the lasso in the framework of Stein's unbiased risk estimation (SURE). We show that the number of nonzero coefficients is an unbiased estimate for the degrees of freedom of the lasso-a conclusion that requires no special assumption on the predictors. In addition, the unbiased estimator is shown to be asymptotically consistent. With these results on hand, various model selection criteria-C-p, AIC and BIC-are available, which, along with the LARS algorithm, provide a principled and efficient approach to obtaining the optimal lasso fit with the computational effort of a single ordinary least-squares fit.
引用
收藏
页码:2173 / 2192
页数:20
相关论文
共 26 条
[1]  
AKAIKE H, 1973, Patent No. 0483125
[2]  
Buhlmann P, 2005, BOOSTING MODEL SELEC
[3]   Adapting to unknown smoothness via wavelet shrinkage [J].
Donoho, DL ;
Johnstone, IM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (432) :1200-1224
[4]  
Efron B, 2004, J AM STAT ASSOC, V99, P619, DOI 10.1198/016214504000000692
[5]   Least angle regression - Rejoinder [J].
Efron, B ;
Hastie, T ;
Johnstone, I ;
Tibshirani, R .
ANNALS OF STATISTICS, 2004, 32 (02) :494-499
[6]  
FAN J, 2006, Patent No. 2275698
[7]   Nonconcave penalized likelihood with a diverging number of parameters [J].
Fan, JQ ;
Peng, H .
ANNALS OF STATISTICS, 2004, 32 (03) :928-961
[8]   Variable selection via nonconcave penalized likelihood and its oracle properties [J].
Fan, JQ ;
Li, RZ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (456) :1348-1360
[9]   Efficient computation and model selection for the support vector regression [J].
Gunter, Lacey ;
Zhu, Ji .
NEURAL COMPUTATION, 2007, 19 (06) :1633-1655
[10]  
HASTIE T, 1990, Patent No. 1082147