Characteristics of InxAl1-xN-GaN high-electron mobility field-effect transistor

被引:27
作者
Katz, O [1 ]
Mistele, D [1 ]
Meyler, B [1 ]
Bahir, G [1 ]
Salzman, J [1 ]
机构
[1] Technion Israel Inst Technol, Wolfson Microelect Res Ctr, Dept Elect Engn, IL-32000 Haifa, Israel
关键词
GaN; high-electron mobility transistor (HEMT); InAIN; piezoelectricity; polarity; transistor;
D O I
10.1109/TED.2004.841281
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
GaN-based field effect transistors commonly include an AlxGa1-xN barrier layer for confinement of a two-dimensional electron gas (2DEG) in the barrier/GaN interface. Some of the limitations of the AlxGa1-xN-GaN heterostructure can be, in principle, avoided by the use of InxAl1-xN as an alternative barrier, which adds flexibility to the engineering of the polarization-induced charges by using tensile or compressive strain through varying the value of x. Here, the implementation and electrical characterization of an InxAl1-x-GaN high electron mobility transistor with Indium content ranging from x = 0.04 to x = 0.15 is described. The measured 2DEG carrier concentration in the In0.04Al0.96N-GaN heterostructure reach 4 x 10(13) cm(-2) at room temperature, and Hall mobility is 480 and 750 cm(2)/V . s at 300 and 10 K, respectively. The increase of Indium content in the barrier results in a shift of the transistor threshold voltage and of the peak transconductance toward positive gate values, as well as a decrease in the drain current. This is consistent with the reduction in polarization difference between GaN and InxAl1-xN. Devices with a gate length of 0.7 mum exhibit f(t) and f(max) values of 13 and 11 GHz, respectively.
引用
收藏
页码:146 / 150
页数:5
相关论文
共 14 条
  • [1] Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures
    Ambacher, O
    Foutz, B
    Smart, J
    Shealy, JR
    Weimann, NG
    Chu, K
    Murphy, M
    Sierakowski, AJ
    Schaff, WJ
    Eastman, LF
    Dimitrov, R
    Mitchell, A
    Stutzmann, M
    [J]. JOURNAL OF APPLIED PHYSICS, 2000, 87 (01) : 334 - 344
  • [2] Indium nitride (InN): A review on growth, characterization, and properties
    Bhuiyan, AG
    Hashimoto, A
    Yamamoto, A
    [J]. JOURNAL OF APPLIED PHYSICS, 2003, 94 (05) : 2779 - 2808
  • [3] Trapping effects and microwave power performance in AlGaN/GaN HEMTs
    Binari, SC
    Ikossi, K
    Roussos, JA
    Kruppa, W
    Park, D
    Dietrich, HB
    Koleske, DD
    Wickenden, AE
    Henry, RL
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2001, 48 (03) : 465 - 471
  • [4] GaN homoepitaxy on freestanding (1(1)over-bar00) oriented GaN substrates
    Chen, CQ
    Gaevski, ME
    Sun, WH
    Kuokstis, E
    Zhang, JP
    Fareed, RSQ
    Wang, HM
    Yang, JW
    Simin, G
    Khan, MA
    Maruska, HP
    Hill, DW
    Chou, MMC
    Chai, B
    [J]. APPLIED PHYSICS LETTERS, 2002, 81 (17) : 3194 - 3196
  • [5] DADGAR A, 2004, INT WORKSH NITR SEM
  • [6] HIGASHIWAKI M, 2004, INT WORKSH NITR SEM
  • [7] Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors
    Ibbetson, JP
    Fini, PT
    Ness, KD
    DenBaars, SP
    Speck, JS
    Mishra, UK
    [J]. APPLIED PHYSICS LETTERS, 2000, 77 (02) : 250 - 252
  • [8] Persistent photocurrent and surface trapping in GaN Schottky ultraviolet detectors
    Katz, O
    Bahir, G
    Salzman, J
    [J]. APPLIED PHYSICS LETTERS, 2004, 84 (20) : 4092 - 4094
  • [9] Electron mobility in an AlGaN/GaN two-dimensional electron gas I - Carrier concentration dependent mobility
    Katz, O
    Horn, A
    Bahir, G
    Salzman, J
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2003, 50 (10) : 2002 - 2008
  • [10] KATZ O, 2004, INT WORKSH NITR SEM