Validation of a flour-free model dough system for throughput studies of baker's yeast

被引:32
作者
Panadero, J [1 ]
Randez-Gil, F [1 ]
Prieto, JA [1 ]
机构
[1] CSIC, Inst Agroquim & Tecnol Alimentos, Dept Biotechnol, E-46100 Burjassot, Valencia, Spain
关键词
D O I
10.1128/AEM.71.3.1142-1147.2005
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Evaluation of gene expression in baker's yeast requires the extraction and collection of pure samples of RNA. However, in bread dough this task is difficult due to the complex composition of the system. We found that a liquid model system can be used to analyze the transcriptional response of industrial strains in dough with a high sugar content. The production levels of CO2 and glycerol by two commercial strains in liquid and flour-based doughs were correlated. We extracted total RNA from both a liquid and a Hour-based dough. We used Northern blotting to analyze mRNA levels of three stress marker genes, HSP26, GPD1, and ENA1, and 10 genes in different metabolic subcategories. All 13 genes had the same transcriptional profile in both systems. Hence, the model appears to effectively mimic the environment encountered by baker's yeast in high-sugar dough. The liquid dough can be used to help understand the connections between technological traits and biological functions and to facilitate studies of gene expression under commercially important, but experimentally intractable, conditions.
引用
收藏
页码:1142 / 1147
页数:6
相关论文
共 40 条
[1]   GPD1, WHICH ENCODES GLYCEROL-3-PHOSPHATE DEHYDROGENASE, IS ESSENTIAL FOR GROWTH UNDER OSMOTIC-STRESS IN SACCHAROMYCES-CEREVISIAE, AND ITS EXPRESSION IS REGULATED BY THE HIGH-OSMOLARITY GLYCEROL RESPONSE PATHWAY [J].
ALBERTYN, J ;
HOHMANN, S ;
THEVELEIN, JM ;
PRIOR, BA .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (06) :4135-4144
[2]   STRUCTURE OF YEAST GLUCOKINASE, A STRONGLY DIVERGED SPECIFIC ALDO-HEXOSE-PHOSPHORYLATING ISOENZYME [J].
ALBIG, W ;
ENTIAN, KD .
GENE, 1988, 73 (01) :141-152
[3]  
American Association of Cereal Chemists , 2000, AACC APPR METH, V10th ed.
[4]  
Attfield PV, 2000, LETT APPL MICROBIOL, V31, P323, DOI 10.1046/j.1472-765X.2000.00825.x
[5]   Stress tolerance: The key to effective strains of industrial baker's yeast [J].
Attfield, PV .
NATURE BIOTECHNOLOGY, 1997, 15 (13) :1351-1357
[6]   Use of flow cytometry to monitor cell damage and predict fermentation activity of dried yeasts [J].
Attfield, PV ;
Kletsas, S ;
Veal, DA ;
van Rooijen, R ;
Bell, PJL .
JOURNAL OF APPLIED MICROBIOLOGY, 2000, 89 (02) :207-214
[7]   PHYSIOLOGY OF OSMOTOLERANCE IN FUNGI [J].
BLOMBERG, A ;
ADLER, L .
ADVANCES IN MICROBIAL PHYSIOLOGY, 1992, 33 :145-212
[8]   STRUCTURE AND EXPRESSION OF A YEAST GENE ENCODING THE SMALL HEAT-SHOCK PROTEIN HSP26 [J].
BOSSIER, P ;
FITCH, IT ;
BOUCHERIE, H ;
TUITE, MF .
GENE, 1989, 78 (02) :323-330
[9]   Remodeling of yeast genome expression in response to environmental changes [J].
Causton, HC ;
Ren, B ;
Koh, SS ;
Harbison, CT ;
Kanin, E ;
Jennings, EG ;
Lee, TI ;
True, HL ;
Lander, ES ;
Young, RA .
MOLECULAR BIOLOGY OF THE CELL, 2001, 12 (02) :323-337
[10]   Elucidating TOR signaling and rapamycin action:: lessons from Saccharomyces cerevisiae [J].
Crespo, JL ;
Hall, MN .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2002, 66 (04) :579-+