Nature of Graphene Edges: A Review

被引:184
作者
Acik, Muge [1 ]
Chabal, Yves J. [1 ]
机构
[1] Univ Texas Dallas, Dept Mat Sci & Engn, Richardson, TX 75080 USA
关键词
ATOMIC LAYER DEPOSITION; ELECTRONIC-PROPERTIES; CARBON NANOTUBES; EPITAXIAL GRAPHENE; NANORIBBON EDGES; GRAPHITE OXIDE; AB-INITIO; ZIGZAG; PERFORMANCE; STATES;
D O I
10.1143/JJAP.50.070101
中图分类号
O59 [应用物理学];
学科分类号
摘要
Graphene edges determine the optical, magnetic, electrical, and electronic properties of graphene. In particular, termination, chemical functionalization and reconstruction of graphene edges leads to crucial changes in the properties of graphene, so control of the edges is critical to the development of applications in electronics, spintronics and optoelectronics. Up to date, significant advances in studying graphene edges have directed various smart ways of controlling the edge morphology. Though, it still remains as a major challenge since even minor deviations from the ideal shape of the edges significantly deteriorate the material properties. In this review, we discuss the fundamental edge configurations together with the role of various types of edge defects and their effects on graphene properties. Indeed, we highlight major demanding challenges to find the most suitable technique to characterize graphene edges for numerous device applications such as transistors, sensors, actuators, solar cells, light-emitting displays, and batteries in graphene technology. (C) 2011 The Japan Society of Applied Physics
引用
收藏
页数:16
相关论文
共 165 条
[1]  
Acik M, 2010, NAT MATER, V9, P840, DOI [10.1038/NMAT2858, 10.1038/nmat2858]
[2]  
ACIK M, 2009, MATER RES SOC S P, V1205
[3]   The Role of Intercalated Water in Multilayered Graphene Oxide [J].
Acik, Muge ;
Mattevi, Cecilia ;
Gong, Cheng ;
Lee, Geunsik ;
Cho, Kyeongjae ;
Chhowalla, Manish ;
Chabal, Yves J. .
ACS NANO, 2010, 4 (10) :5861-5868
[4]   Toxicity of Graphene and Graphene Oxide Nanowalls Against Bacteria [J].
Akhavan, Omid ;
Ghaderi, Elham .
ACS NANO, 2010, 4 (10) :5731-5736
[5]   Honeycomb Carbon: A Review of Graphene [J].
Allen, Matthew J. ;
Tung, Vincent C. ;
Kaner, Richard B. .
CHEMICAL REVIEWS, 2010, 110 (01) :132-145
[6]   Growth of large-area graphene films from metal-carbon melts [J].
Amini, Shaahin ;
Garay, Javier ;
Liu, Guanxiong ;
Balandin, Alexander A. ;
Abbaschian, Reza .
JOURNAL OF APPLIED PHYSICS, 2010, 108 (09)
[7]   On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries [J].
Aurbach, D ;
Markovsky, B ;
Weissman, I ;
Levi, E ;
Ein-Eli, Y .
ELECTROCHIMICA ACTA, 1999, 45 (1-2) :67-86
[8]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[9]   Electronic structure and stability of semiconducting graphene nanoribbons [J].
Barone, Veronica ;
Hod, Oded ;
Scuseria, Gustavo E. .
NANO LETTERS, 2006, 6 (12) :2748-2754
[10]   Effect of edge roughness on electronic transport in graphene nanoribbon channel metal-oxide-semiconductor field-effect transistors [J].
Basu, D. ;
Gilbert, M. J. ;
Register, L. F. ;
Banerjee, S. K. ;
MacDonald, A. H. .
APPLIED PHYSICS LETTERS, 2008, 92 (04)