Novel optical properties and emerging applications of metal nanostructures

被引:270
作者
Schwartzberg, Adam M. [2 ]
Zhang, Jin Z. [1 ]
机构
[1] Univ Calif Santa Cruz, Dept Chem & Biochem, Santa Cruz, CA 95064 USA
[2] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
关键词
D O I
10.1021/jp801770w
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper provides a brief overview of recent research activities concerning metal nanomaterials, including their synthesis, structure, surface plasmon absorption, surface enhanced Raman scattering (SERS), electron dynamics, emerging applications, and the historical context by which to view these subjects. We emphasize coinage metals, particularly silver and gold. Silver and gold nanostructures exhibit fascinating optical properties due to their strong optical absorption in the visible as a result of the collective oscillation of conduction band electrons, known as the surface plasmon. This is the origin of many interesting physical phenomena and related applications such as surface plasmon resonance (SPR) and SERS useful in chemical and biomedical detection and analysis. SERS offers high sensitivity and molecular specificity that are attractive for sensing and imaging applications. Electron dynamics in metal nanostructures have been studied using ultrafast laser techniques to gain fundamental insight into electron-phonon interaction as well as coherent lattice oscillation in different metal nanostructures. Relevant theoretical work and models are also discussed in conjunction with the related experimental work. Synthesis and structural characterization are also discussed to make this paper self-contained and easier to follow. The paper ends with some emerging applications of optical properties of metal nanomaterials including photothermal therapy for cancer.
引用
收藏
页码:10323 / 10337
页数:15
相关论文
共 226 条
[1]   ANOMALOUSLY INTENSE RAMAN-SPECTRA OF PYRIDINE AT A SILVER ELECTRODE [J].
ALBRECHT, MG ;
CREIGHTON, JA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1977, 99 (15) :5215-5217
[2]   Semiconductor clusters, nanocrystals, and quantum dots [J].
Alivisatos, AP .
SCIENCE, 1996, 271 (5251) :933-937
[3]   Plasmon light scattering in biology and medicine: new sensing approaches, visions and perspectives [J].
Aslan, K ;
Lakowicz, JR ;
Geddes, CD .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2005, 9 (05) :538-544
[4]   Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms [J].
Aslan, Kadir ;
Wu, Meng ;
Lakowicz, Joseph R. ;
Geddes, Chris D. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (06) :1524-+
[5]   Plasmon resonance shifts of Au-coated Au2S nanoshells: Insight into multicomponent nanoparticle growth [J].
Averitt, RD ;
Sarkar, D ;
Halas, NJ .
PHYSICAL REVIEW LETTERS, 1997, 78 (22) :4217-4220
[6]  
Barr T. L., 1994, MODERN ESCA PRINCIPL
[7]   Application of surface-enhanced Raman spectroscopy for detection of beta amyloid using nanoshells [J].
Beier, Hope T. ;
Cowan, Christopher B. ;
Chou, I-Hsien ;
Pallikal, James ;
Henry, James E. ;
Benford, Melodie E. ;
Jackson, Joseph B. ;
Good, Theresa A. ;
Cote, Gerard L. .
PLASMONICS, 2007, 2 (02) :55-64
[8]   Kinetics of the electron transfer reaction of Cytochrome c552 adsorbed on biomimetic electrode studied by time-resolved surface-enhanced resonance Raman spectroscopy and electrochemistry [J].
Bernad, Sophie ;
Leygue, Nadine ;
Korri-Youssoufi, Hafsa ;
Lecomte, Sophie .
EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2007, 36 (08) :1039-1048
[9]   ATOMIC FORCE MICROSCOPE [J].
BINNIG, G ;
QUATE, CF ;
GERBER, C .
PHYSICAL REVIEW LETTERS, 1986, 56 (09) :930-933
[10]   All-optical nanoscale pH meter [J].
Bishnoi, Sandra W. ;
Rozell, Christopher J. ;
Levin, Carly S. ;
Gheith, Muhammed K. ;
Johnson, Bruce R. ;
Johnson, Don H. ;
Halas, Naomi J. .
NANO LETTERS, 2006, 6 (08) :1687-1692