Interaction of the eukaryotic pore-forming cytolysin equinatoxin II with model membranes:: 19F NMR studies

被引:81
作者
Anderluh, G
Razpotnik, A
Podlesek, Z
Macek, P
Separovic, F
Norton, RS
机构
[1] Univ Ljubljana, Biotech Fac, Dept Biol, Ljubljana 1000, Slovenia
[2] Univ Melbourne, Sch Chem, Melbourne, Vic 3010, Australia
[3] Walter & Eliza Hall Inst Med Res, Parkville, Vic 3050, Australia
基金
澳大利亚研究理事会;
关键词
cytolysin; actinoporin; pore formation; membrane; NMR;
D O I
10.1016/j.jmb.2004.12.058
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Sea anemones produce a family of 18-20 kDa proteins, the actinoporins, which lyse cells by forming pores in cell membranes. Sphingomyelin plays an important role in their lytic activity, with membranes lacking this lipid being largely refractory to these toxins. As a means of characterising membrane binding by the actinoporin equinatoxin II (EqTII), we have used F-19 NMR to probe the environment of Trp residues in the presence of micelles and bicelles. Trp was chosen as previous data from mutational studies and truncated analogues had identified the N-terminal helix of EqTII and the surface aromatic cluster including tryptophan residues 112 and 116 as being important for membrane interactions. The five tryptophan residues were replaced with 5-fluorotryptophan and assigned by site-directed mutagenesis. The F-19 resonance of W112 was most affected in the presence of phospholipid micelles or bicelles, followed by W116, with further change induced by the addition of sphingomyelin. Although binding to phosphatidylcholine is not sufficient to enable pore formation in bilayer membranes, this interaction had a greater effect on the tryptophan residues in our studies than the subsequent interaction with sphingomyelin. Furthermore, sphingomyelin had a direct effect on EqTII in both model membranes, so its role in EqTII pore formation involves more than simply an indirect effect mediated via bulk lipid properties. The lack of change in chemical shift for W149 even in the presence of sphingomyelin indicates that, at least in the model membranes studied here, interaction with sphingomyelin was not sufficient to trigger dissociation of the N-terminal helix from the beta-sandwich, which forms the bulk of the protein. (C) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:27 / 39
页数:13
相关论文
共 59 条
[1]   Pore formation by equinatoxin II, a eukaryotic protein toxin, occurs by induction of nonlamellar lipid structures [J].
Anderluh, G ;
Dalla Serra, M ;
Viero, G ;
Guella, G ;
Macek, P ;
Menestrina, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (46) :45216-45223
[2]   Cysteine-scanning mutagenesis of an eukaryotic pore-forming toxin from sea anemone - Topology in lipid membranes [J].
Anderluh, G ;
Barlic, A ;
Podlesek, Z ;
Macek, P ;
Pungercar, J ;
Gubensek, F ;
Zecchini, ML ;
Dalla Serra, M ;
Menestrina, G .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1999, 263 (01) :128-136
[3]   Cloning, sequencing, and expression of equinatoxin .2. [J].
Anderluh, G ;
Pungercar, J ;
Strukelj, B ;
Macek, P ;
Gubensek, F .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1996, 220 (02) :437-442
[4]   Lysine 77 is a key residue in aggregation of equinatoxin II, a pore-forming toxin from sea anemone Actinia eguina [J].
Anderluh, G ;
Barlic, A ;
Potrich, C ;
Macek, P ;
Menestrina, G .
JOURNAL OF MEMBRANE BIOLOGY, 2000, 173 (01) :47-55
[5]   Cytolytic peptide and protein toxins from sea anemones (Anthozoa: Actiniaria) [J].
Anderluh, G ;
Macek, P .
TOXICON, 2002, 40 (02) :111-124
[6]   Crystal structure of the soluble form of equinatoxin II, a pore-forming toxin from the sea anemone Actinia equina [J].
Athanasiadis, A ;
Anderluh, G ;
Macek, P ;
Turk, D .
STRUCTURE, 2001, 9 (04) :341-346
[7]   A CARCINOEMBRYONIC ANTIGEN-DIRECTED IMMUNOTOXIN BUILT BY LINKING A MONOCLONAL-ANTIBODY TO A HEMOLYTIC TOXIN [J].
AVILA, AD ;
DEACOSTA, CM ;
LAGE, A .
INTERNATIONAL JOURNAL OF CANCER, 1989, 43 (05) :926-929
[8]   Lipid phase coexistence favors membrane insertion of equinatoxin-II, a pore-forming toxin from Actinia equina [J].
Barlic, A ;
Gutiérrez-Aguirre, I ;
Caaveiro, JMM ;
Cruz, A ;
Ruiz-Argüello, MB ;
Pérez-Gil, J ;
González-Mañas, JM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (33) :34209-34216
[9]   PRIMARY AND SECONDARY STRUCTURE OF A PORE-FORMING TOXIN FROM THE SEA-ANEMONE, ACTINIA-EQUINA L, AND ITS ASSOCIATION WITH LIPID VESICLES [J].
BELMONTE, G ;
MENESTRINA, G ;
PEDERZOLLI, C ;
KRIZAJ, I ;
GUBENSEK, F ;
TURK, T ;
MACEK, P .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 1994, 1192 (02) :197-204
[10]   PORE FORMATION BY THE SEA-ANEMONE CYTOLYSIN EQUINATOXIN-II IN RED-BLOOD-CELLS AND MODEL LIPID-MEMBRANES [J].
BELMONTE, G ;
PEDERZOLLI, C ;
MACEK, P ;
MENESTRINA, G .
JOURNAL OF MEMBRANE BIOLOGY, 1993, 131 (01) :11-22