Perivascular cells regulate endothelial membrane type-1 matrix metalloproteinase activity

被引:49
作者
Lafleur, MA
Forsyth, PA
Atkinson, SJ
Murphy, G
Edwards, DR [1 ]
机构
[1] Univ E Anglia, Sch Biol Sci, Norwich NR4 7TJ, Norfolk, England
[2] Univ Calgary, Dept Clin Neurosci, Calgary, AB T2N 4N2, Canada
[3] Tom Baker Canc Clin, Calgary, AB T2N 4N2, Canada
基金
加拿大自然科学与工程研究理事会; 英国医学研究理事会;
关键词
angiogenesis; MMPs; TIMPs; MT1-MMP; endothelial cells; smooth muscle cells; pericytes;
D O I
10.1006/bbrc.2001.4596
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Angiogenic stimuli selectively induced expression of membrane type-1 matrix metalloproteinase (MT1-MMP) transcripts and protein in human umbilical vein endothelial cells (HUVECs). Pro-MMP-2 activation was blocked by treatment with tissue inhibitor of metalloproteinases-2 (TIMP-2), but not by TIMP-1 or inhibitors of other proteinase classes. Anti-MT1-MMP antibodies abrogated recombinant pro-MMP-2 activation by plasma membranes, indicating that MT1-MMP is the main mediator of pro-MMP-2 activation in HUVECs. Cocultures of HUVECs with smooth muscle cells (SMC) or pericytes (PC) resulted in the suppression of HUVEC pro-MMP-2 activation. Treatment of A10 SMC conditioned media with a neutralising anti-TIMP-2 antibody prevented the suppression of HUVEC pro-MMP-2 activation. Inhibition of HUVEC MT1-MMP function by PC and SM3 SMC correlated with elevated TIMP-3 expression. Thus, perivascular supporting cells regulate the functions of proangiogenic MMPs elaborated by endothelial cells via selective expression of TIMPs. This interplay may be important for maintenance of blood vessel architecture and neovascularisation. (C) 2001 Academic Press.
引用
收藏
页码:463 / 473
页数:11
相关论文
共 59 条
[11]   MT1-MMP on the cell surface causes focal degradation of gelatin films [J].
d'Ortho, MP ;
Stanton, H ;
Butler, M ;
Atkinson, SJ ;
Murphy, G ;
Hembry, RM .
FEBS LETTERS, 1998, 421 (02) :159-164
[12]   Membrane-type matrix metalloproteinases 1 and 2 exhibit broad-spectrum proteolytic capacities comparable to many matrix metalloproteinases [J].
d'Ortho, MP ;
Will, H ;
Atkinson, S ;
Butler, G ;
Messent, A ;
Gavrilovic, J ;
Smith, B ;
Timpl, R ;
Zardi, L ;
Murphy, G .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1997, 250 (03) :751-757
[13]  
DAMORE PA, 1990, CELL CULTURE TECHNIQ, P299
[14]   ISOLATION AND CHARACTERIZATION OF ANGIOGENIN, AN ANGIOGENIC PROTEIN FROM HUMAN CARCINOMA-CELLS [J].
FETT, JW ;
STRYDOM, DJ ;
LOBB, RR ;
ALDERMAN, EM ;
BETHUNE, JL ;
RIORDAN, JF ;
VALLEE, BL .
BIOCHEMISTRY, 1985, 24 (20) :5480-5486
[15]  
FOLKMAN J, 1992, J BIOL CHEM, V267, P10931
[16]  
Folkman J, 1974, Adv Cancer Res, V19, P331, DOI 10.1016/S0065-230X(08)60058-5
[17]   Blood vessel formation: What is its molecular basis? [J].
Folkman, J ;
DAmore, PA .
CELL, 1996, 87 (07) :1153-1155
[18]   VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation [J].
Gerber, HP ;
Vu, TH ;
Ryan, AM ;
Kowalski, J ;
Werb, Z ;
Ferrara, N .
NATURE MEDICINE, 1999, 5 (06) :623-628
[19]   Molecular cloning and characterization of human tissue inhibitor of metalloproteinase 4 [J].
Greene, J ;
Wang, MS ;
Liu, YLE ;
Raymond, LA ;
Rosen, C ;
Shi, YNE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (48) :30375-30380
[20]   Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis [J].
Hanahan, D ;
Folkman, J .
CELL, 1996, 86 (03) :353-364