An exponential-family multidimensional scaling mixture methodology

被引:32
作者
Wedel, M [1 ]
Desarbo, WS [1 ]
机构
[1] PENN STATE UNIV,UNIVERSITY PK,PA 16802
关键词
concomitant variable model; EM algorithm; maximum likelihood; unfolding;
D O I
10.2307/1392253
中图分类号
F [经济];
学科分类号
02 ;
摘要
A multidimensional scaling methodology (STUNMIX) for the analysis of subjects' preference/choice of stimuli that sets out to integrate the previous work in this area into a single framework, as well as to provide a variety of new options and models, is presented. Locations of the stimuli and the ideal points of derived segments of subjects on latent dimensions are estimated simultaneously. The methodology is formulated in the framework of the exponential family of distributions, whereby a wide range of different data types can be analyzed. Possible reparameterizations of stimulus coordinates by stimulus characteristics, as well as of probabilities of segment membership by subject background variables, are permitted. The models are estimated in a maximum likelihood framework. The performance of the models is demonstrated on synthetic data, and robustness is investigated. An empirical application is provided, concerning intentions to buy portable telephones.
引用
收藏
页码:447 / 459
页数:13
相关论文
共 38 条
[1]  
AITKIN M, 1985, J ROY STAT SOC B MET, V47, P67
[2]  
ANDERSEN EB, 1980, DISCRETE STATISTICAL
[3]  
[Anonymous], 1994, Kendall's Advanced Theory of Statistics, Distribution theory
[4]  
[Anonymous], 1994, P 1 US JAP C FRONT S
[5]  
[Anonymous], J CLASSIFICATION
[6]  
Arminger G, 1995, HDB STAT MODELING SO, P77
[7]   CONSTRAINED LATENT CLASS ANALYSIS - SIMULTANEOUS CLASSIFICATION AND SCALING OF DISCRETE CHOICE DATA [J].
BOCKENHOLT, U ;
BOCKENHOLT, I .
PSYCHOMETRIKA, 1991, 56 (04) :699-716
[8]  
BOCKENHOLT U, 1986, APPL STOCHASTIC MODE, V2, P202
[9]   HETEROGENEOUS LOGIT MODEL IMPLICATIONS FOR BRAND POSITIONING [J].
CHINTAGUNTA, PK .
JOURNAL OF MARKETING RESEARCH, 1994, 31 (02) :304-311
[10]  
Darmois G, 1935, CR HEBD ACAD SCI, V200, P1265