A HECT domain E3 enzyme assembles novel polyubiquitin chains

被引:116
作者
You, JX [1 ]
Pickart, CM [1 ]
机构
[1] Johns Hopkins Univ, Sch Publ Hlth, Dept Biochem & Mol Biol, Baltimore, MD 21205 USA
关键词
D O I
10.1074/jbc.M100034200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Although polyubiquitin chains linked through Lys(29) of ubiquitin have been implicated in the targeting of certain substrates to proteasomes, the signaling properties of these chains are poorly understood. We previously described a ubiquitin-protein isopeptide ligase (E3) from erythroid cells that assembles polyubiquitin chains through either Lys(29) Or LyS(48) of ubiquitin (Mastrandrea, L. D., You, J., Niles, E. G., and Pickart, C. M. (1999) J. Biol. Chem. 274, 27299-27306). Here we describe the purification of this E3 based on its affinity for a linear fusion of ubiquitin to the ubiquitin conjugating enzyme UbcH5A. Among five major polypeptides in the affinity column eluate, the activity of interest was assigned to the product of a previously cloned human cDNA known as KIAA10 (Nomura, N., Miyajima, N., Sazuka, T., Tanaka, A., Kawarabayasi, Y., Sato, S., Nagase, T., Seki, N., Ishikawa, K., and Tabata, S. (1994) DNA Res. 1, 27-35). The KIAA10 protein is a member of the HECT ((h) under bar omologous to (E) under bar6-AP (c) under bar arboxyl (t) under bar erminus) domain family of E3s. These E3s share a conserved C-terminal (HECT) domain that functions in the catalysis of ubiquitination, while their divergent N-terminal domains function in cognate substrate binding (Huibregtse, J. M., Scheffner, M., Beaudenon, S., and Howley, P. M. (1995) Proc. Natl. Acad. Sci. U.S.A. 92, 2563-2567). Recombinant KIAA10 catalyzed the assembly of both Lys(29)- and Lys(48)-linked polyubiquitin chains. Surprisingly, the C-terminal 428 residues of KIAA10 were both necessary and sufficient for this activity, suggesting that the ability to assemble polyubiquitin chains may be a general property of HECT domains. The N-terminal domain of KIAA10 interacted in vitro with purified 26 S proteasomes and with the isolated S2/Rpn1 subunit of the proteasome's 19 S regulatory complex, suggesting that the N-terminal domains of HECT E3s may function in proteasome binding as well as substrate binding.
引用
收藏
页码:19871 / 19878
页数:8
相关论文
共 46 条
[1]   TIP120B: A novel TIP120-family protein that is expressed specifically in muscle tissues [J].
Aoki, T ;
Okada, N ;
Ishida, M ;
Yogosawa, S ;
Makino, Y ;
Tamura, TA .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1999, 261 (03) :911-916
[2]   STRESS RESISTANCE IN SACCHAROMYCES-CEREVISIAE IS STRONGLY CORRELATED WITH ASSEMBLY OF A NOVEL TYPE OF MULTIUBIQUITIN CHAIN [J].
ARNASON, T ;
ELLISON, MJ .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (12) :7876-7883
[3]  
Ausubel FM., 1994, Curr. Protoc. Mol. Biol
[4]   Novel multiubiquitin chain linkages catalyzed by the conjugating enzymes E2(EPF) and RAD6 are recognized by 26 S proteasome subunit 5 [J].
Baboshina, OV ;
Haas, AL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (05) :2823-2831
[5]   A MULTIUBIQUITIN CHAIN IS CONFINED TO SPECIFIC LYSINE IN A TARGETED SHORT-LIVED PROTEIN [J].
CHAU, V ;
TOBIAS, JW ;
BACHMAIR, A ;
MARRIOTT, D ;
ECKER, DJ ;
GONDA, DK ;
VARSHAVSKY, A .
SCIENCE, 1989, 243 (4898) :1576-1583
[6]   SCF and cullin/RING H2-based ubiquitin ligases [J].
Deshaies, RJ .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1999, 15 :435-467
[7]   Regulatory subunit interactions of the 26S proteasome, a complex problem [J].
Ferrell, K ;
Wilkinson, CRM ;
Dubiel, W ;
Gordon, C .
TRENDS IN BIOCHEMICAL SCIENCES, 2000, 25 (02) :83-88
[8]   INHIBITION OF PROTEOLYSIS AND CELL-CYCLE PROGRESSION IN A MULTIUBIQUITINATION-DEFICIENT YEAST MUTANT [J].
FINLEY, D ;
SADIS, S ;
MONIA, BP ;
BOUCHER, P ;
ECKER, DJ ;
CROOKE, ST ;
CHAU, V .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (08) :5501-5509
[9]   Ubiquitin Lys63 is involved in ubiquitination of a yeast plasma membrane protein [J].
Galan, JM ;
HaguenauerTsapis, R .
EMBO JOURNAL, 1997, 16 (19) :5847-5854
[10]  
GREGORI L, 1990, J BIOL CHEM, V265, P8354