Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture

被引:743
作者
Fantner, GE [1 ]
Hassenkam, T
Kindt, JH
Weaver, JC
Birkedal, H
Pechenik, L
Cutroni, JA
Cidade, GAG
Stucky, GD
Morse, DE
Hansma, PK
机构
[1] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Inst Collaborat Biotechnol, Santa Barbara, CA 93106 USA
[3] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA
[4] Univ Fed Rio de Janeiro, Biophys Inst Carlos Chagas Filho, BR-21491590 Rio De Janeiro, Brazil
基金
美国国家卫生研究院; 美国国家航空航天局; 美国国家科学基金会; 美国海洋和大气管理局;
关键词
D O I
10.1038/nmat1428
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Properties of the organic matrix of bone(1) as well as its function in the microstructure(2) could be the key to the remarkable mechanical properties of bone(3). Previously, it was found that on the molecular level, calcium-mediated sacrificial bonds increased stiffness and enhanced energy dissipation in bone constituent molecules(4,5). Here we present evidence for how this sacrificial bond and hidden length mechanism contributes to the mechanical properties of the bone composite, by investigating the nanoscale arrangement of the bone constituents(6-8) and their interactions. We find evidence that bone consists of mineralized collagen fibrils and a non-fibrillar organic matrix(2), which acts as a 'glue' that holds the mineralized fibrils together. We believe that this glue may resist the separation of mineralized collagen fibrils. As in the case of the sacrificial bonds in single molecules(5), the effectiveness of this mechanism increases with the presence of Ca2+ ions.
引用
收藏
页码:612 / 616
页数:5
相关论文
共 31 条
[11]   Bone recognition mechanism of porcine osteocalcin from crystal structure [J].
Hoang, QQ ;
Sicheri, F ;
Howard, AJ ;
Yang, DSC .
NATURE, 2003, 425 (6961) :977-980
[12]  
Jäger I, 2000, BIOPHYS J, V79, P1737, DOI 10.1016/S0006-3495(00)76426-5
[13]  
McKee MD, 1996, MICROSC RES TECHNIQ, V33, P141, DOI 10.1002/(SICI)1097-0029(19960201)33:2<141::AID-JEMT5>3.0.CO
[14]  
2-W
[15]  
Muller Ralph, 2002, Top Magn Reson Imaging, V13, P307, DOI 10.1097/00002142-200210000-00003
[16]   Effect of aging on the toughness of human cortical bone: evaluation by R-curves [J].
Nalla, RK ;
Kruzic, JJ ;
Kinney, JH ;
Ritchie, RO .
BONE, 2004, 35 (06) :1240-1246
[17]   Mechanistic fracture criteria for the failure of human cortical bone [J].
Nalla, RK ;
Kinney, JH ;
Ritchie, RO .
NATURE MATERIALS, 2003, 2 (03) :164-168
[18]   Diffuse damage accumulation in the fracture process zone of human cortical bone specimens and its influence on fracture toughness [J].
Parsamian, GP ;
Norman, TL .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2001, 12 (09) :779-783
[19]  
Raspanti M, 2000, EUR J HISTOCHEM, V44, P335
[20]   The effects of damage and microcracking on the impact strength of bone [J].
Reilly, GC ;
Currey, JD .
JOURNAL OF BIOMECHANICS, 2000, 33 (03) :337-343