Estimating the spectrum of a density operator

被引:126
作者
Keyl, M [1 ]
Werner, RF [1 ]
机构
[1] Tech Univ Braunschweig, Inst Math Phys, D-38106 Braunschweig, Germany
来源
PHYSICAL REVIEW A | 2001年 / 64卷 / 05期
关键词
D O I
10.1103/PhysRevA.64.052311
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Given N quantum systems prepared according to the same density operator rho. we propose a measurement on the N-fold system that approximately yields the spectrum of rho. The projections of the proposed observable decompose the Hilbert space according to the irreducible representations of the permutations on N points. and are labeled by Young frames, whose relative row lengths estimate the eigenvalues of rho in decreasing order. We show convergence of these estimates in the limit N --> proportional to, and that the probability for errors decreases exponentially with a rate we compute explicitly.
引用
收藏
页数:5
相关论文
共 22 条
[1]   Optimal estimation of two-qubit pure-state entanglement -: art. no. 062307 [J].
Acín, A ;
Tarrach, R ;
Vidal, G .
PHYSICAL REVIEW A, 2000, 61 (06) :8
[2]   Optimal state estimation for d-dimensional quantum systems [J].
Bruss, D ;
Macchiavello, C .
PHYSICS LETTERS A, 1999, 253 (5-6) :249-251
[3]   Optimal purification of single qubits [J].
Cirac, JI ;
Ekert, AK ;
Macchiavello, C .
PHYSICAL REVIEW LETTERS, 1999, 82 (21) :4344-4347
[4]  
Cramer H., 1938, ActualitesSci. Indust., V736, P2
[5]   A LARGE DEVIATION PRINCIPLE FOR THE REDUCTION OF PRODUCT REPRESENTATIONS [J].
DUFFIELD, NG .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 109 (02) :503-515
[6]  
Efron B., 1993, INTRO BOOTSTRAP, V1st ed., DOI DOI 10.1201/9780429246593
[7]  
Ellis R., 2006, ENTROPY LARGE DEVIAT
[8]   Estimating mixed quantum states [J].
Fischer, DG ;
Freyberger, M .
PHYSICS LETTERS A, 2000, 273 (5-6) :293-302
[9]   State estimation for large ensembles [J].
Gill, RD ;
Massar, S .
PHYSICAL REVIEW A, 2000, 61 (04) :16
[10]  
GISIN N, 2001, QUANTPH0010036