Estimating mixed quantum states

被引:15
作者
Fischer, DG [1 ]
Freyberger, M [1 ]
机构
[1] Univ Ulm, Abt Quantenphys, D-89069 Ulm, Germany
关键词
D O I
10.1016/S0375-9601(00)00513-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss single adaptive measurements for the estimation of mixed quantum states of qubits. The results are compared to the optimal estimation schemes using collective measurements. We also demonstrate that the advantage of collective measurements increases when the degree of mixing of the quantum states increases. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:293 / 302
页数:10
相关论文
共 21 条
[1]  
BERGER J. O., 2013, Statistical Decision Theory and Bayesian Analysis, DOI [10.1007/978-1-4757-4286-2, DOI 10.1007/978-1-4757-4286-2]
[2]   Optimal state estimation for d-dimensional quantum systems [J].
Bruss, D ;
Macchiavello, C .
PHYSICS LETTERS A, 1999, 253 (5-6) :249-251
[3]   Optimal universal quantum cloning and state estimation [J].
Bruss, D ;
Ekert, A ;
Macchiavello, C .
PHYSICAL REVIEW LETTERS, 1998, 81 (12) :2598-2601
[4]   Universal algorithm for optimal estimation of quantum states from finite ensembles via realizable generalized measurement [J].
Derka, R ;
Buzek, V ;
Ekert, AK .
PHYSICAL REVIEW LETTERS, 1998, 80 (08) :1571-1575
[5]   Quantum-state estimation by self-learning measurements [J].
Fischer, DG ;
Kienle, SH ;
Freyberger, M .
PHYSICAL REVIEW A, 2000, 61 (03) :6
[6]  
Freyberger M, 1997, PHYS WORLD, V10, P41
[7]   State estimation for large ensembles [J].
Gill, RD ;
Massar, S .
PHYSICAL REVIEW A, 2000, 61 (04) :16
[8]   EXPLICIT COMPUTATION OF THE BURES DISTANCE FOR DENSITY-MATRICES [J].
HUBNER, M .
PHYSICS LETTERS A, 1992, 163 (04) :239-242
[9]  
HUGNER M, 1993, PHYS LETT A, V179, P226
[10]   FIDELITY FOR MIXED QUANTUM STATES [J].
JOZSA, R .
JOURNAL OF MODERN OPTICS, 1994, 41 (12) :2315-2323