Singularity spectrum of multifractal functions involving oscillating singularities

被引:54
作者
Arneodo, A
Bacry, E
Jaffard, S
Muzy, JF
机构
[1] Ctr Rech Paul Pascal, F-33600 Pessac, France
[2] Ecole Polytech, Ctr Math Appl, F-91128 Palaiseau, France
[3] Univ Paris 12, Dept Math, F-94010 Creteil, France
[4] ENS Cachan, CMLA, F-94235 Cachan, France
关键词
fractals; Hausdorff dimension; Holder regularity; wavelets;
D O I
10.1007/BF02475987
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give general mathematical results concerning oscillating singularities and we study examples of functions composed only of oscillating singularities. These functions are defined by explicit coefficients on an orthonormal wavelet basis. We compute their Holder regularity and oscillation at every point and we deduce their spectrum of oscillating singularities.
引用
收藏
页码:159 / 174
页数:16
相关论文
共 12 条
  • [1] Oscillating singularities on cantor sets: A grand-canonical multifractal formalism
    Arneodo, A
    Bacry, E
    Jaffard, S
    Muzy, JF
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1997, 87 (1-2) : 179 - 209
  • [2] THE THERMODYNAMICS OF FRACTALS REVISITED WITH WAVELETS
    ARNEODO, A
    BACRY, E
    MUZY, JF
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1995, 213 (1-2) : 232 - 275
  • [3] BACRY E, 1993, J STAT PHYS, V70, P314
  • [4] ON THE MULTIFRACTAL ANALYSIS OF MEASURES
    BROWN, G
    MICHON, G
    PEYRIERE, J
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1992, 66 (3-4) : 775 - 790
  • [5] THE DIMENSION SPECTRUM OF SOME DYNAMIC-SYSTEMS
    COLLET, P
    LEBOWITZ, JL
    PORZIO, A
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1987, 47 (5-6) : 609 - 644
  • [6] FALCONER I, 1990, FRACTAL GEOMTRY
  • [7] FRISCH U, 1985, P INT SUMM SCH PHYS, P84
  • [8] Multifractal formalism for functions .1. Results valid for all functions
    Jaffard, S
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1997, 28 (04) : 944 - 970
  • [9] JAFFARD S, IN PRESS MEM AMS
  • [10] Jaffard S, 1991, Publ Mat, V35, P155, DOI DOI 10.5565/PUBLMAT_35191_06