Molecular and physiological characterization of the NAD-dependent glycerol 3-phosphate dehydrogenase in the filamentous fungus Aspergillus nidulans

被引:54
作者
Fillinger, S
Ruijter, G
Tamás, MJ
Visser, J
Thevelein, JM
d'Enfert, C
机构
[1] Inst Pasteur, Unite Physiol Cellulaire, F-75724 Paris 15, France
[2] Univ Wageningen & Res Ctr, NL-6703 HA Wageningen, Netherlands
[3] Katholieke Univ Leuven, Lab Mol Celbiol, B-3001 Louvain, Belgium
关键词
D O I
10.1046/j.1365-2958.2001.02223.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In filamentous fungi, glycerol biosynthesis has been proposed to play an important role during conidiospore germination and in response to a hyperosmotic shock, but little is known about the genes involved. Here, we report on the characterization of the major Aspergillus nidulans glycerol 3-phosphate dehydrogenase (G3PDH)-encoding gene, gfdA. G3PDH is responsible for the conversion of dihydroxyacetone phosphate (DHAP) into glycerol 3-phosphate (G3P), which is subsequently converted into glycerol by an as yet uncharacterized phosphatase. Inactivation of gfdA does not abolish glycerol biosynthesis, showing that the other pathway from DHAP, via dihydroxyacetone (DHA), to glycerol is also functional in A. nidulans. The gfdA null mutant displays reduced G3P levels and an osmoremediable growth defect on various carbon sources except glycerol. This growth defect is associated with an abnormal hyphal morphology that is reminiscent of a cell wall defect. Furthermore, the growth defect at low osmolarity is enhanced in the presence of the chitin-interacting agent calcofluor and the membrane-destabilizing agent sodium dodecyl sulphate (SDS). As inactivation of gfdA has no impact on phospholipid biosynthesis or glycolytic intermediates levels, as might be expected from reduced G3P levels, a previously unsuspected link between G3P and cell wall integrity is proposed to occur in filamentous fungi.
引用
收藏
页码:145 / 157
页数:13
相关论文
共 63 条
[51]   ELEVATED RECOMBINATION RATES IN TRANSCRIPTIONALLY ACTIVE DNA [J].
THOMAS, BJ ;
ROTHSTEIN, R .
CELL, 1989, 56 (04) :619-630
[52]   Increase of external osmolarity reduces morphogenetic defects and accumulation of chitin in a gas1 mutant of Saccharomyces cerevisiae [J].
Turchini, A ;
Ferrario, L ;
Popolo, L .
JOURNAL OF BACTERIOLOGY, 2000, 182 (04) :1167-1171
[53]   FRUCTOSE 2,6-BISPHOSPHATE AND CARBOHYDRATE-METABOLISM DURING THE LIFE-CYCLE OF THE AQUATIC FUNGUS BLASTOCLADIELLA-EMERSONII [J].
VANDERCAMMEN, A ;
FRANCOIS, JM ;
TORRES, BB ;
MAIA, JCC ;
HERS, HG .
JOURNAL OF GENERAL MICROBIOLOGY, 1990, 136 :137-146
[54]  
VANSCHAFTINGEN E, 1987, ADV ENZYMOL RAMB, V59, P315
[55]  
VANSCHAFTINGEN E, 1985, EUR J BIOCHEM, V148, P399
[56]   CHARACTERIZATION OF AN EFFICIENT GENE CLONING STRATEGY FOR ASPERGILLUS-NIGER BASED ON AN AUTONOMOUSLY REPLICATING PLASMID - CLONING OF THE NICB GENE OF ASPERGILLUS-NIGER [J].
VERDOES, JC ;
PUNT, PJ ;
VANDERBERG, P ;
DEBETS, F ;
STOUTHAMER, AH ;
VANDENHONDEL, CAMJJ .
GENE, 1994, 146 (02) :159-165
[57]  
VISSER J, 1988, J GEN MICROBIOL, V134, P655
[58]  
WANG HT, 1994, MOL MICROBIOL, V17, P95
[59]   CELL-WALL SYNTHESIS IN APICAL HYPHAL GROWTH [J].
WESSELS, JGH .
INTERNATIONAL REVIEW OF CYTOLOGY-A SURVEY OF CELL BIOLOGY, 1986, 104 :37-79
[60]   POLYOL POOLS IN ASPERGILLUS-NIGER [J].
WITTEVEEN, CFB ;
VISSER, J .
FEMS MICROBIOLOGY LETTERS, 1995, 134 (01) :57-62