On multikink states described by the nonlocal sine-Gordon equation

被引:9
作者
Alfimov, GL [1 ]
Korolev, VG [1 ]
机构
[1] Lukin Res Inst Phys Problems, Moscow 103460, Russia
基金
俄罗斯基础研究基金会;
关键词
nonlocality; sine-Gordon; multikink; kink-binding;
D O I
10.1016/S0375-9601(98)00544-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It was found recently that nonlocal non-dissipative generalizations of the sine-Gordon model may describe coherent multikink states. In this paper the problem of classification of such nonlocal states is considered for a model kernel of the integral operator. Rigorous results concerning a number of possible forms of these multikink states are set forth and the coding for such states is suggested. The exact statements are confirmed by results of numerical analysis. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:429 / 435
页数:7
相关论文
共 15 条
[1]   Dynamics of topological solitons in models with nonlocal interactions [J].
Alfimov, G. L. ;
Eleonskii, V. M. ;
Kulagin, N. E. ;
Mitskevich, N. V. .
CHAOS, 1993, 3 (03) :405-414
[2]  
Aliev Yu. M., 1992, Superconductivity: Physics, Chemistry, Technology, V5, P230
[3]  
BELYAKOV LA, 1990, SELECTA MATH SOVIETI, V9, P219
[4]  
BUFFONI B, 9405 U BATH
[5]  
ELEONSKII VM, 1989, DOKL AKAD NAUK SSSR+, V309, P848
[6]   HOMOCLINIC ORBITS AND THEIR BIFURCATIONS IN DYNAMICAL SYSTEMS WITH TWO DEGREES OF FREEDOM: A METHOD OF QUALITATIVE AND NUMERICAL ANALYSIS [J].
Eleonsky, V. M. ;
Korolev, V. G. ;
Kulagin, N. E. ;
Shil'nikov, L. P. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (02) :385-397
[7]   INTERACTIONS OF SOLITONS IN NON-INTEGRABLE SYSTEMS - DIRECT PERTURBATION METHOD AND APPLICATIONS [J].
GORSHKOV, KA ;
OSTROVSKY, LA .
PHYSICA D, 1981, 3 (1-2) :428-438
[8]  
Guckenheimer J., 2013, Nonlinear Oscillations Dynamical Systems and Bifurcations of Vector Fields, DOI DOI 10.1007/978-1-4612-1140-2
[9]  
KOZLOV V. V., 1995, SYMMETRIES TOPOLOGY
[10]  
Lerman L. M., 1991, Chaos, V1, P174, DOI 10.1063/1.165859