On the self-fractional Fourier functions

被引:12
作者
Alieva, T [1 ]
机构
[1] MINTZ RADIOTECH INST,MOSCOW,RUSSIA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1996年 / 29卷 / 15期
关键词
D O I
10.1088/0305-4470/29/15/002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown that a self-fractional Fourier function for an angle 2 pi N/M, where N and M are indivisible integers (N < M), is also a self-fractional Fourier function for angles 2 pi j/M (j = 1, 2,...). This allows us to define a self-fractional Fourier function of order M. An eigenvalue of a fractional Fourier operator for angle 2 pi j/M is equal to exp(+/-i2 pi Lj/M), where L is an integer.
引用
收藏
页码:L377 / L379
页数:3
相关论文
共 11 条
[1]   THE FRACTIONAL FOURIER-TRANSFORM IN OPTICAL PROPAGATION PROBLEMS [J].
ALIEVA, T ;
LOPEZ, V ;
AGULLOLOPEZ, F ;
ALMEIDA, LB .
JOURNAL OF MODERN OPTICS, 1994, 41 (05) :1037-1044
[2]   THE FRACTIONAL FOURIER-TRANSFORM AND TIME-FREQUENCY REPRESENTATIONS [J].
ALMEIDA, LB .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (11) :3084-3091
[3]   SELF-FOURIER FUNCTIONS [J].
CAOLA, MJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (19) :L1143-L1144
[4]   GENERALIZED SELF-FOURIER FUNCTIONS [J].
CINCOTTI, G ;
GORI, F ;
SANTARSIERO, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (20) :L1191-L1194
[5]  
FEYNMAN RP, 1965, QUANTUM MECH PATH IN, P103
[6]   SELF-FOURIER OBJECTS AND OTHER SELF-TRANSFORM OBJECTS [J].
LOHMANN, AW ;
MENDLOVIC, D .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1992, 9 (11) :2009-2012
[7]   IMAGE-FORMATION OF A SELF-FOURIER OBJECT [J].
LOHMANN, AW ;
MENDLOVIC, D .
APPLIED OPTICS, 1994, 33 (02) :153-157
[8]   FRACTIONAL FOURIER-TRANSFORMS AND THEIR OPTICAL IMPLEMENTATION .1. [J].
MENDLOVIC, D ;
OZAKTAS, HM .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1993, 10 (09) :1875-1881
[9]   GRADED-INDEX FIBERS, WIGNER-DISTRIBUTION FUNCTIONS, AND THE FRACTIONAL FOURIER-TRANSFORM [J].
MENDLOVIC, D ;
OZAKTAS, HM ;
LOHMANN, AW .
APPLIED OPTICS, 1994, 33 (26) :6188-6193
[10]   SELF FOURIER FUNCTIONS AND FRACTIONAL FOURIER-TRANSFORMS [J].
MENDLOVIC, D ;
OZAKTAS, HM ;
LOHMANN, AW .
OPTICS COMMUNICATIONS, 1994, 105 (1-2) :36-38