Altered middle lamella homogalacturonan and disrupted deposition of (1→5)-α-L-arabinan in the pericarp of Cnr, a ripening mutant of tomato

被引:105
作者
Orfila, C
Seymour, GB
Willats, WGT
Huxham, IM
Jarvis, MC
Dover, CJ
Thompson, AJ
Knox, JP [1 ]
机构
[1] Univ Leeds, Ctr Plasma Sci, Leeds LS2 9JT, W Yorkshire, England
[2] Hort Res Int, Warwick CV35 9EF, England
[3] Univ Glasgow, Inst Biomed & Life Sci, Div Cell & Mol Biol, Glasgow G12 8QQ, Lanark, Scotland
[4] Univ Glasgow, Dept Chem, Glasgow G12 8QQ, Lanark, Scotland
[5] Hort Res Int, W Malling ME19 6BJ, Kent, England
关键词
D O I
10.1104/pp.126.1.210
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Cnr (colorless non-ripening) is a pleiotropic tomato (Lycopersicon esculentum) fruit ripening mutant with altered tissue properties including weaker cell-to-cell contacts in the pericarp (A.J. Thompson, M. Tor, C.S. Barry, J. Vrebalov, C. Orfila, M.C. Jarvis, J.J. Giovannoni, D. Grierson, G.B. Seymour [1999] Plant Physiol 120: 383-390). Whereas the genetic basis of the Cnr mutation is being identified by molecular analyses, here we report the identification of cell biological factors underlying the Cnr texture phenotype. In comparison with wild type, ripe-stage Cnr fruits have stronger, non-swollen cell walls (CW) throughout the pericarp and extensive intercellular space in the inner pericarp. Using electron energy loss spectroscopy imaging of calcium-binding capacity and anti-homogalacturonan (HG) antibody probes (PAM1 and JIM5) we demonstrate that maturation processes involving middle lamella HG are altered in Cnr fruit, resulting in the absence or a low level of HG-/calcium-based cell adhesion. We also demonstrate that the deposition of (1 -->5)-alpha -L-arabinan is disrupted in Cnr pericarp CW and that this disruption occurs prior to fruit ripening. The relationship between the disruption of (1 -->5)-alpha -L-arabinan deposition in pericarp CW and the Cnr phenotype is discussed.
引用
收藏
页码:210 / 221
页数:12
相关论文
共 49 条
[21]  
MACDOUGALL AJ, 1996, CARBOHYD RES, V923, P235
[22]   ENDO-1,4-BETA-GLUCANASE, XYLOGLUCANASE, AND XYLOGLUCAN ENDO-TRANSGLYCOSYLASE ACTIVITIES VERSUS POTENTIAL SUBSTRATES IN RIPENING TOMATOES [J].
MACLACHLAN, G ;
BRADY, C .
PLANT PHYSIOLOGY, 1994, 105 (03) :965-974
[23]   Temporal and spatial regulation of pectic (1→4)-β-D-galactan in cell walls of developing pea cotyledons:: implications for mechanical properties [J].
McCartney, L ;
Ormerod, AP ;
Gidley, MJ ;
Knox, JP .
PLANT JOURNAL, 2000, 22 (02) :105-113
[24]  
Mohnen D., 1999, COMPREHENSIVE NATURA, V3, P497
[25]  
MOLLARD A, 1994, PLANT PHYSIOL BIOCH, V32, P703
[26]  
Nothnagel EA, 1997, INT REV CYTOL, V174, P195, DOI 10.1016/S0074-7696(08)62118-X
[27]  
O'Neill M., 1990, Methods in Plant Biochemistry, P415, DOI [10.1016/B978-0-12-461012-5.50018-5, DOI 10.1016/B978-0-12-461012-5.50018-5]
[28]   Spatial regulation of pectic polysaccharides in relation to pit fields in cell walls of tomato fruit pericarp [J].
Orfila, C ;
Knox, JP .
PLANT PHYSIOLOGY, 2000, 122 (03) :775-781
[29]   BETA-GALACTOSIDASES IN RIPENING TOMATOES [J].
PRESSEY, R .
PLANT PHYSIOLOGY, 1983, 71 (01) :132-135
[30]   In vivo and in vitro swelling of cell walls during fruit ripening [J].
Redgwell, RJ ;
MacRae, E ;
Hallett, I ;
Fischer, M ;
Perry, J ;
Harker, R .
PLANTA, 1997, 203 (02) :162-173