Origin of dynamical properties in PMMA-C60 nanocomposites

被引:104
作者
Kropka, Jamie M.
Putz, Karl W.
Pryamitsyn, Victor
Ganesan, Venkat
Green, Peter F. [1 ]
机构
[1] Univ Texas, Dept Chem Engn, Austin, TX 78712 USA
[2] Univ Michigan, Dept Mat Sci & Eng Appl Phys, Ann Arbor, MI 48109 USA
关键词
GLASS-TRANSITION TEMPERATURE; VISCOELASTIC PROPERTIES; MOLECULAR-DYNAMICS; POLYMER-FILMS; FILLED POLYMERS; BEHAVIOR; RHEOLOGY; CONFINEMENT; SIMULATION; MELT;
D O I
10.1021/ma070407p
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Poly(methyl methacrylate) (PMMA)-C-60 nanocomposites, with compositions in the range 0 <= phi(wt)(C60) <= 0.05, are shown to exhibit systematic increases in dynamic shear moduli, in glass transition temperature (T-g), and in the longest relaxation time of the polymer (tau(R)) with increasing fullerene concentration. We show that while the phi(wt)(C60) dependence of the plateau modulus can be reconciled with a conventional "filler" effect, the systematic increases in T-g and in tau(R) are associated with specific interactions between the C-60 and the polymer segments. In the melt, these segment-C-60 interactions are proposed to reduce polymer segmental mobility in the vicinity of the particle surface and ultimately suppress polymer dynamics, as measured mechanically, in a manner consistent with an increase in the polymer segmental friction coefficient.
引用
收藏
页码:5424 / 5432
页数:9
相关论文
共 52 条
[1]   Glass-transition temperature behavior of alumina/PMMA nanocomposites [J].
Ash, BJ ;
Siegel, RW ;
Schadler, LS .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2004, 42 (23) :4371-4383
[2]   Micro total analysis systems. 2. Analytical standard operations and applications [J].
Auroux, PA ;
Iossifidis, D ;
Reyes, DR ;
Manz, A .
ANALYTICAL CHEMISTRY, 2002, 74 (12) :2637-2652
[3]   Quantitative equivalence between polymer nanocomposites and thin polymer films [J].
Bansal, A ;
Yang, HC ;
Li, CZ ;
Cho, KW ;
Benicewicz, BC ;
Kumar, SK ;
Schadler, LS .
NATURE MATERIALS, 2005, 4 (09) :693-698
[4]   Tailoring of thermomechanical properties of thermoplastic nanocomposites by surface modification of nanoscale silica particles [J].
Becker, C ;
Krug, H ;
Schmidt, H .
BETTER CERAMICS THROUGH CHEMISTRY VII: ORGANIC/INORGANIC HYBRID MATERIALS, 1996, 435 :237-242
[5]   Gradient of glass transition temperature in filled elastomers [J].
Berriot, J ;
Montes, H ;
Lequeux, F ;
Long, D ;
Sotta, P .
EUROPHYSICS LETTERS, 2003, 64 (01) :50-56
[6]   Glass transition of miscible binary polymer-polymer thin films [J].
Besancon, Brian M. ;
Soles, Christopher L. ;
Green, Peter F. .
PHYSICAL REVIEW LETTERS, 2006, 97 (05)
[7]   A molecular dynamics study of a model nanoparticle embedded in a polymer matrix [J].
Brown, D ;
Mélé, P ;
Marceau, S ;
Albérola, ND .
MACROMOLECULES, 2003, 36 (04) :1395-1406
[8]   Crystallization and orientation of C60 from C60/polymethyl methacrylate films [J].
Chen, GH ;
Ma, GB .
APPLIED PHYSICS LETTERS, 1998, 72 (25) :3294-3296
[9]   Molecular dynamics simulations of polymer transport in nanocomposites [J].
Desai, T ;
Keblinski, P ;
Kumar, SK .
JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (13)
[10]   Nanotube networks in polymer nanocomposites: Rheology and electrical conductivity [J].
Du, FM ;
Scogna, RC ;
Zhou, W ;
Brand, S ;
Fischer, JE ;
Winey, KI .
MACROMOLECULES, 2004, 37 (24) :9048-9055