Comparison of AFLPs with other markers for phylogenetic inference in wild tomatoes [Solanum L. section Lycopersicon (Mill.) Wettst.]

被引:137
作者
Spooner, DM
Peralta, IE
Knapp, S
机构
[1] Univ Wisconsin, USDA ARS, Vegetable Crops Res Unit, Dept Hort, Madison, WI 53706 USA
[2] Univ Nacl Cuyo, Dept Agron, RA-5500 Mendoza, Argentina
[3] Consejo Nacl Invest Cient & Tecn, IADIZA, RA-5500 Mendoza, Argentina
[4] Nat Hist Museum, Dept Bot, London SW7 5BD, England
关键词
amplified fragment length polymorphism; AFLP; congruence tests; Lycopersicon; phylogeny; Solanaceae; Solanum section Lycopersicon; tomato;
D O I
10.2307/25065301
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Wild tomatoes (Solanum section Lycopersicon) are native to western South America. The delimitation and relationships of tomato species have differed widely depending upon whether morphological or biological species concepts are considered more important. Molecular data from mitochondrial, nuclear, and chloroplast DNA restriction fragment length polymorphisms (RFLPs), nuclear microsatellites, isozymes, and gene sequences of internal transcribed spacers of nuclear ribosomal DNA (ITS; multiple-copy), the single-copy nuclear encoded Granule-bound Starch Synthase gene (GBSSI or waxy), and morphology, have been used to examine hypotheses of species relationships. This study is a companion to the previous GBSSI gene sequence study and to the morphological study of relationships of all ten wild tomato species (including the recently described S. gala-pagense), with a concentration on the most widespread and variable species S. peruvianum s.l. These new AFLP data are largely concordant with the GBSSI and morphological data and in general support the species outlined in the latest treatment by C.M. Rick, but demonstrate the distinct nature of northern and southern Peruvian populations of S. peruvianum, and suggest that their taxonomy needs revision. Solanum ochranthum is supported as sister to wild tomatoes, and S. habrochaites and S. pennellii reside in a basal polytomy in the tomato clade.
引用
收藏
页码:43 / 61
页数:19
相关论文
共 65 条
[11]  
CHILD A, 1990, Feddes Repertorium, V101, P209, DOI 10.1002/fedr.19901010502
[12]  
Darwin S. C., 2003, Systematics and Biodiversity, V1, P29, DOI 10.1017/S1477200003001026
[13]   TOWARD A PHYLOGENETIC SYSTEM OF BIOLOGICAL NOMENCLATURE [J].
DEQUEIROZ, K ;
GAUTHIER, J .
TRENDS IN ECOLOGY & EVOLUTION, 1994, 9 (01) :27-31
[14]   Using AFLP to resolve phylogenetic relationships in a morphologically diversified plant species complex when nuclear and chloroplast sequences fail to reveal variability [J].
Després, L ;
Gielly, L ;
Redoutet, W ;
Taberlet, P .
MOLECULAR PHYLOGENETICS AND EVOLUTION, 2003, 27 (02) :185-196
[15]  
Doyle J. L., 1987, Phytochemical Bulletin, V19, P11, DOI 10.2307/4119796
[16]   METHODS FOR COMPUTING WAGNER TREES [J].
FARRIS, JS .
SYSTEMATIC ZOOLOGY, 1970, 19 (01) :83-&
[17]  
Farris JS, 1995, CLADISTICS, V11, P377, DOI 10.1111/j.1096-0031.1995.tb00096.x
[18]  
Futuyma D.J., 1998, EVOL BIOL
[19]   Plant hormones and homeoboxes: bridging the gap? [J].
Hay, A ;
Craft, J ;
Tsiantis, M .
BIOESSAYS, 2004, 26 (04) :395-404
[20]   Congruence versus phylogenetic accuracy: Revisiting the incongruence length difference test [J].
Hipp, AL ;
Hall, JC ;
Sytsma, KJ .
SYSTEMATIC BIOLOGY, 2004, 53 (01) :81-89