A magnetically structured accretion disc corona, generated by buoyancy instability in the disc, can account for observations of flare-like events in active galactic nuclei. We examine how Petschek magnetic reconnection, associated with MHD turbulence, can result in a violent release of energy and heat the magnetically closed regions of the corona up to canonical X-ray emitting temperatures. X-ray magnetic flares, the after effect of the energy released in slow shocks, can account for the bulk of the X-ray luminosity from Seyfert galaxies and consistently explain the observed short-time-scale variability.