An outline of adaptive wavelet Galerkin methods for Tikhonov regularization of inverse parabolic problems

被引:7
作者
Dahlke, S [1 ]
Maass, P [1 ]
机构
[1] Univ Marburg, Fachbereich Math, D-3550 Marburg, Germany
来源
RECENT DEVELOPMENT IN THEORIES & NUMERICS | 2003年
关键词
D O I
10.1142/9789812704924_0006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss some ideas how adaptive wavelet schemes can be applied to the treatment of certain inverse problems. The classical Tikhonov-Phillips regularization produces a numerical scheme which consists of an inner and an outer iteration. In its normal form, the inner iteration can be interpreted as a boundedly invertible operator equation which can be handled very efficiently by using a stable wavelet basis. This general framework is illustrated by an application to the inverse heat equation.
引用
收藏
页码:56 / 66
页数:11
相关论文
共 26 条
[12]  
ENGL HW, 1996, REGULARIAZATION INVE
[13]  
GFRERER H, 1987, MATH COMPUT, V49, P507, DOI 10.1090/S0025-5718-1987-0906185-4
[14]  
Groetsch C. W., 1984, THEORY TIKHONOV REGU
[15]   On a sideways parabolic equation [J].
Hao, DN ;
Reinhardt, HJ .
INVERSE PROBLEMS, 1997, 13 (02) :297-309
[16]   A VARIANT OF FINITE-DIMENSIONAL TIKHONOV REGULARIZATION WITH A-POSTERIORI PARAMETER CHOICE [J].
KING, JT ;
NEUBAUER, A .
COMPUTING, 1988, 40 (02) :91-109
[17]  
LOUIS AK, 1989, INVERSE SCHLECTGESTE
[18]  
LOUIS AK, 1994, WAVELETSS THEORIE AN
[19]  
Maass P, 1997, INVERSE PROBLEMS IN MEDICAL IMAGING AND NONDESTRUCTIVE TESTING, P134
[20]  
Maass P, 1996, INT J IMAG SYST TECH, V7, P191, DOI 10.1002/(SICI)1098-1098(199623)7:3<191::AID-IMA5>3.0.CO