Development of Semiconducting Polymers for Solar Energy Harvesting

被引:108
作者
Liang, Yongye
Yu, Luping
机构
[1] Univ Chicago, Dept Chem, Chicago, IL 60637 USA
[2] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
semiconducting polymer; solar cell; bulk hetero-junction; fine-tuning; LOW-BAND-GAP; PHOTOVOLTAIC DEVICES; CONJUGATED POLYMER; POLYFLUORENE COPOLYMER; CELLS; EFFICIENT; PERFORMANCE; POLY(3-HEXYLTHIOPHENE); MORPHOLOGY; OXIDE;
D O I
10.1080/15583724.2010.515765
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Semiconducting polymer solar cells are an attracting class of devices for low-cost solar energy harvesting. The bulk hetero-junction structure based on composite materials of semiconducting polymer donor and fullerene acceptor is an effective form of active layers for polymer solar cells. So far, the limiting factors for widespread, practical applications in polymers solar cell is their low power conversion efficiency (PCE) and potential instability under light exposure. Thus new polymeric materials with desired properties and stability are crucial for improving the solar cell performance. Numerous conjugated polymers, such as poly[phenylene vinylene]s (PPVs) and polythiophenes, have been explored for this purpose, which lead to PCE as high as 5%. To improve the performance, low bandgap polymers and polymers with low lying HOMO energy levels have been the subject of recent focus. Efficiencies close to 8% have been achieved in the polymer system composed of thieno[3,4-b]thiophene and benzodithiophene alternating units (PTB). The high efficiency is due to the synergistic combinations of desired properties in the polymer system through detailed fine-tuning of the polymer structure. The recent results reaffirmed the notion that better solar cell polymers could be further developed for vital applications in real devices.
引用
收藏
页码:454 / 473
页数:20
相关论文
共 86 条
[1]   Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility [J].
Bao, Z ;
Dodabalapur, A ;
Lovinger, AJ .
APPLIED PHYSICS LETTERS, 1996, 69 (26) :4108-4110
[2]   Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer [J].
Beek, WJE ;
Wienk, MM ;
Janssen, RAJ .
ADVANCED MATERIALS, 2004, 16 (12) :1009-+
[3]   Poly (3-hexylthiophene) fibers for photovoltaic applications [J].
Berson, Solenn ;
De Bettignies, Remi ;
Bailly, Severine ;
Guillerez, Stephane .
ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (08) :1377-1384
[4]   A low-bandgap poly(2,7-carbazole) derivative for use in high-performance solar cells [J].
Blouin, Nicolas ;
Michaud, Alexandre ;
Leclerc, Mario .
ADVANCED MATERIALS, 2007, 19 (17) :2295-+
[5]   Effect of LiF/metal electrodes on the performance of plastic solar cells [J].
Brabec, CJ ;
Shaheen, SE ;
Winder, C ;
Sariciftci, NS ;
Denk, P .
APPLIED PHYSICS LETTERS, 2002, 80 (07) :1288-1290
[6]  
Brabec CJ, 2002, ADV FUNCT MATER, V12, P709, DOI 10.1002/1616-3028(20021016)12:10<709::AID-ADFM709>3.0.CO
[7]  
2-N
[8]   Organic photovoltaics: technology and market [J].
Brabec, CJ .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2004, 83 (2-3) :273-292
[9]   Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers:: A molecular picture [J].
Brédas, JL ;
Beljonne, D ;
Coropceanu, V ;
Cornil, J .
CHEMICAL REVIEWS, 2004, 104 (11) :4971-5003
[10]   Low band gap polymers for organic photovoltaics [J].
Bundgaard, Eva ;
Krebs, Frederik C. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2007, 91 (11) :954-985