A laser desorption ionisation mass spectrometry approach for high throughput metabolomics

被引:19
作者
Vaidyanathan, Seetharaman [1 ]
Jones, Dan [2 ]
Broadhurst, David I. [1 ]
Ellis, Joanne [1 ]
Jenkins, Tudor [2 ]
Dunn, Warwick B. [1 ]
Hayes, Andrew [3 ]
Burton, Nicola [3 ]
Oliver, Stephen G. [3 ]
Kell, Douglas B. [1 ]
Goodacre, Royston [1 ]
机构
[1] Univ Manchester, Sch Chem, Manchester M60 1QD, Lancs, England
[2] Univ Wales, Inst Math & Phys Sci, Aberystwyth, Dyfed, Wales
[3] Univ Manchester, Fac Life Sci, Manchester M13 9PT, Lancs, England
基金
英国生物技术与生命科学研究理事会;
关键词
laser desorption ionisation; high-throughput metabolomics; metabolic footprinting; yeast; functional genomics;
D O I
10.1007/s11306-005-0007-x
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The importance of metabolomic data in functional genomic investigations is increasingly becoming evident, as is its utility in novel biomarker discovery. We demonstrate a simple approach to the screening of metabolic information that we believe will be valuable in generating metabolomic data. Laser desorption ionisation mass spectrometry on porous silicon was effective in detecting 22 of 30 metabolites in a mixture in the negative-ion mode and 19 of 30 metabolites in the positive-ion mode, without the employment of any prior analyte separation steps. Overall, 26 of the 30 metabolites could be covered between the positive and negative-ion modes. Although the response for the metabolites at a given concentration differed, it was possible to generate direct quantitative information for a given analyte in the mixture. This technique was subsequently used to generate metabolic footprints from cell-free supernatants and, when combined with chemometric analysis, enabled us to discriminate haploid yeast single-gene deletants (mutants). In particular, the metabolic footprint of a deletion mutant in a gene encoding a transcriptional activator (Gln3p) showed increased levels of peaks, including one corresponding to glutamate, compared to the other mutants and the wild-type strain tested, enabling its discrimination based on metabolic information.
引用
收藏
页码:243 / 250
页数:8
相关论文
共 39 条
[1]   High-throughput classification of yeast mutants for functional genomics using metabolic footprinting [J].
Allen, J ;
Davey, HM ;
Broadhurst, D ;
Heald, JK ;
Rowland, JJ ;
Oliver, SG ;
Kell, DB .
NATURE BIOTECHNOLOGY, 2003, 21 (06) :692-696
[2]   Discrimination of modes of action of antifungal substances by use of metabolic footprinting [J].
Allen, J ;
Davey, HM ;
Broadhurst, D ;
Rowland, JJ ;
Oliver, SG ;
Kell, DB .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2004, 70 (10) :6157-6165
[3]   Functional genomics and proteomics: charting a multidimensional map of the yeast cell [J].
Bader, GD ;
Heilbut, A ;
Andrews, B ;
Tyers, M ;
Hughes, T ;
Boone, C .
TRENDS IN CELL BIOLOGY, 2003, 13 (07) :344-356
[4]   The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors [J].
Beck, T ;
Hall, MN .
NATURE, 1999, 402 (6762) :689-692
[5]   The TOR signaling cascade regulates gene expression in response to nutrients [J].
Cardenas, ME ;
Cutler, NS ;
Lorenz, MC ;
Di Como, CJ ;
Heitman, J .
GENES & DEVELOPMENT, 1999, 13 (24) :3271-3279
[6]  
CASTRILLO JI, FUNGAL GENO IN PRESS
[7]   Transmitting the signal of excess nitrogen in Saccharomyces cerevisiae from the Tor proteins to the GATA factors:: connecting the dots [J].
Cooper, TG .
FEMS MICROBIOLOGY REVIEWS, 2002, 26 (03) :223-238
[8]   REGULATION OF NITROGEN ASSIMILATION IN SACCHAROMYCES-CEREVISIAE - ROLES OF THE URE2 AND GLN3 GENES [J].
COURCHESNE, WE ;
MAGASANIK, B .
JOURNAL OF BACTERIOLOGY, 1988, 170 (02) :708-713
[9]   The TOR-controlled transcription activators GLN3, RTG1, and RTG3 are regulated in response to intracellular levels of glutamine [J].
Crespo, JL ;
Powers, T ;
Fowler, B ;
Hall, MN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (10) :6784-6789
[10]   Role of transcriptional regulation in controlling fluxes in central carbon metabolism of Saccharomyces cerevisiae -: A chemostat culture study [J].
Daran-Lapujade, P ;
Jansen, MLA ;
Daran, JM ;
van Gulik, W ;
de Winde, JH ;
Pronk, JT .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (10) :9125-9138