Lattice thermal conductivity of graphene nanoribbons: Anisotropy and edge roughness scattering

被引:166
作者
Aksamija, Z. [1 ]
Knezevic, I. [1 ]
机构
[1] Univ Wisconsin, Dept Elect & Comp Engn, Madison, WI 53706 USA
关键词
PHONON-DISPERSION; LAYER GRAPHENE; GRAPHITE;
D O I
10.1063/1.3569721
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present a calculation of the thermal conductivity of graphene nanoribbons (GNRs), based on solving the Boltzmann transport equation with the full phonon dispersions, a momentum-dependent model for edge roughness scattering, as well as three-phonon and isotope scattering. The interplay between edge roughness scattering and the anisotropy of the phonon dispersions results in thermal conduction that depends on the chiral angle of the nanoribbon. Lowest thermal conductivity occurs in the armchair direction and highest in zig-zag nanoribbons. Both the thermal conductivity and the degree of armchair/zig-zag anisotropy depend strongly on the width of the nanoribbon and the rms height of the edge roughness, with the smallest and most anisotropic thermal conductivities occurring in narrow GNRs with rough edges. (C) 2011 American Institute of Physics. [doi:10.1063/1.3569721]
引用
收藏
页数:3
相关论文
共 29 条
[1]   Anisotropy and boundary scattering in the lattice thermal conductivity of silicon nanomembranes [J].
Aksamija, Z. ;
Knezevic, I. .
PHYSICAL REVIEW B, 2010, 82 (04)
[2]  
[Anonymous], 1979, SOLID STATE PHYS
[3]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[4]   Thermal conductivity of zigzag single-walled carbon nanotubes: Role of the umklapp process [J].
Cao, JX ;
Yan, XH ;
Xiao, Y ;
Ding, JW .
PHYSICAL REVIEW B, 2004, 69 (07)
[5]   Thermal conductivity of graphene ribbons from equilibrium molecular dynamics: Effect of ribbon width, edge roughness, and hydrogen termination [J].
Evans, William J. ;
Hu, Lin ;
Keblinski, Pawel .
APPLIED PHYSICS LETTERS, 2010, 96 (20)
[6]   Graphene: Status and Prospects [J].
Geim, A. K. .
SCIENCE, 2009, 324 (5934) :1530-1534
[7]   Heat conduction in graphene: experimental study and theoretical interpretation [J].
Ghosh, S. ;
Nika, D. L. ;
Pokatilov, E. P. ;
Balandin, A. A. .
NEW JOURNAL OF PHYSICS, 2009, 11
[8]   Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits [J].
Ghosh, S. ;
Calizo, I. ;
Teweldebrhan, D. ;
Pokatilov, E. P. ;
Nika, D. L. ;
Balandin, A. A. ;
Bao, W. ;
Miao, F. ;
Lau, C. N. .
APPLIED PHYSICS LETTERS, 2008, 92 (15)
[9]  
Ghosh S, 2010, NAT MATER, V9, P555, DOI [10.1038/NMAT2753, 10.1038/nmat2753]
[10]   Determination of two-dimensional phonon dispersion relation of graphite by Raman spectroscopy -: art. no. 155405 [J].
Grüneis, A ;
Saito, R ;
Kimura, T ;
Cançado, LG ;
Pimenta, MA ;
Jorio, A ;
Souza, AG ;
Dresselhaus, G ;
Dresselhaus, MS .
PHYSICAL REVIEW B, 2002, 65 (15) :1554051-1554057