Formulation of Hamiltonian equations for fractional variational problems

被引:80
作者
Muslih, SI [1 ]
Baleanu, D
机构
[1] Al Azhar Univ, Dept Phys, Gaza, Israel
[2] Abdus Salaam Int Ctr Theoret Phys, Trieste, Italy
[3] Cankaya Univ, Dept Math & Comp Sci, Fac Arts & Sci, TR-06530 Ankara, Turkey
关键词
fractional derivative; Hamiltonian system; non-conservative systems;
D O I
10.1007/s10582-005-0067-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An extension of Riewe's fractional Hamiltonian formulation is presented for fractional constrained systems. The conditions of consistency of the set of constraints with equations of motion are investigated. Three examples of fractional constrained systems are analyzed in details.
引用
收藏
页码:633 / 642
页数:10
相关论文
共 23 条
[1]   Analytical solution for stochastic response of a fractionally damped beam [J].
Agrawal, OP .
JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2004, 126 (04) :561-566
[2]   A Bliss-type multiplier rule for constrained variational problems with time delay [J].
Agrawal, OP ;
Gregory, J ;
PericakSpector, K .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 210 (02) :702-711
[3]   A new Lagrangian and a new Lagrange equation of motion for fractionally damped systems [J].
Agrawal, OP .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2001, 68 (02) :339-341
[4]   Formulation of Euler-Lagrange equations for fractional variational problems [J].
Agrawal, OP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 272 (01) :368-379
[5]  
[Anonymous], APPL FRACTION CALCUL
[6]   Lagrangians with linear velocities within Riemann-Liouville fractional derivatives [J].
Baleanu, D ;
Avkar, T .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2004, 119 (01) :73-79
[7]  
BALEANU D, 2004, P 1 IFAC WORKSH FRAC, P597
[8]  
Gorenflo R., 1997, FRACTIONAL CALCULUS
[10]   Lagrangean and Hamiltonian fractional sequential mechanics [J].
Klimek, M .
CZECHOSLOVAK JOURNAL OF PHYSICS, 2002, 52 (11) :1247-1253