On quantum coding for ensembles of mixed states

被引:28
作者
Barnum, H
Caves, CM
Fuchs, CA
Jozsa, R
Schumacher, B
机构
[1] Univ Bristol, Dept Comp Sci, Bristol BS8 1UB, Avon, England
[2] Univ New Mexico, Dept Phys & Astron, Albuquerque, NM 87131 USA
[3] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[4] Kenyon Coll, Dept Phys, Gambier, OH 43022 USA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2001年 / 34卷 / 35期
关键词
D O I
10.1088/0305-4470/34/35/304
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the problem of optimal asymptotically faithful compression for ensembles of mixed quantum states. Although the optimal rate is unknown, we prove upper and lower bounds and describe a series of illustrative examples of compression of mixed states. We also discuss a classical analogue of the problem.
引用
收藏
页码:6767 / 6785
页数:19
相关论文
共 30 条
[21]   CONVEX TRACE FUNCTIONS AND WIGNER-YANASE-DYSON CONJECTURE [J].
LIEB, EH .
ADVANCES IN MATHEMATICS, 1973, 11 (03) :267-288
[22]   ENTROPY, INFORMATION AND QUANTUM MEASUREMENTS [J].
LINDBLAD, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1973, 33 (04) :305-322
[23]   QUANTUM CODING THEOREM FOR MIXED STATES [J].
LO, HK .
OPTICS COMMUNICATIONS, 1995, 119 (5-6) :552-556
[24]  
Luce R. D., 1957, Games and Decisions: Introduction and Critical Survey
[25]  
NIELSEN MA, 1998, QUANTUM INFORMATION
[26]   Sending classical information via noisy quantum channels [J].
Schumacher, B ;
Westmoreland, MD .
PHYSICAL REVIEW A, 1997, 56 (01) :131-138
[27]   QUANTUM CODING [J].
SCHUMACHER, B .
PHYSICAL REVIEW A, 1995, 51 (04) :2738-2747
[28]  
Uhlmann A., 1976, Reports on Mathematical Physics, V9, P273, DOI 10.1016/0034-4877(76)90060-4
[29]   RELATIVE ENTROPY AND WIGNER-YANASE-DYSON-LIEB CONCAVITY IN AN INTERPOLATION THEORY [J].
UHLMANN, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 54 (01) :21-32
[30]  
Von Neumann J., 1947, THEORY GAMES EC BEHA