Pseudospectral differencing methods for characteristic roots of delay differential equations

被引:175
作者
Breda, D
Maset, S
Vermiglio, R
机构
[1] Univ Udine, Dipartimento Matemat & Informat, I-33100 Udine, Italy
[2] Univ Trieste, Dipartimento Matemat & Informat, I-34127 Trieste, Italy
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
pseudospectral methods; delay differential equations; characteristic roots;
D O I
10.1137/030601600
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In [D. Breda, S. Maset, and R. Vermiglio, IMA J. Numer. Anal., 24 ( 2004), pp. 1 19.] and [ D. Breda, The In. nitesimal Generator Approach for the Computation of Characteristic Roots for Delay Differential Equations Using BDF Methods, Research report UDMI RR17/ 2002, Dipartimento di Matematica e Informatica, Universita degli Studi di Udine, Udine, Italy, 2002.] the authors proposed to compute the characteristic roots of delay differential equations (DDEs) with multiple discrete and distributed delays by approximating the derivative in the in. nitesimal generator of the solution operator semigroup by Runge - Kutta ( RK) and linear multistep ( LMS) methods, respectively. In this work the same approach is proposed in a new version based on pseudospectral differencing techniques. We prove the "spectral accuracy" convergence behavior typical of pseudospectral schemes, as also illustrated by some numerical experiments.
引用
收藏
页码:482 / 495
页数:14
相关论文
共 15 条
[1]   Computing the characteristic roots for delay differential equations [J].
Breda, D ;
Maset, S ;
Vermiglio, R .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2004, 24 (01) :1-19
[2]  
BREDA D, IN PRESS APPL NUMER
[3]  
BREDA D, 2002, RR172002 UDMI U STUD
[4]  
CONWAY J. B., 1978, Graduate Texts in Math., V11
[5]  
Diekmann O., 1995, DELAY EQUATIONS FUNC, V110
[6]   On stability of LMS methods and characteristic roots of delay differential equations [J].
Engelborghs, K ;
Roose, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (02) :629-650
[7]   Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL [J].
Engelborghs, K ;
Luzyanina, T ;
Roose, D .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2002, 28 (01) :1-21
[8]   Numerical computation of stability and detection of Hopf bifurcations of steady state solutions of delay differential equations [J].
Engelborghs, K ;
Roose, D .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1999, 10 (3-4) :271-289
[9]  
ENGELBORGHS K, 2001, TW330 DEP COMP SCI
[10]  
FATTOUH A, 2000, P 2 IFAC WORKSH LIN