FastProject: a tool for low-dimensional analysis of single-cell RNA-Seq data

被引:44
作者
DeTomaso, David [1 ,2 ]
Yosef, Nir [1 ,2 ,3 ,4 ]
机构
[1] Univ Calif Berkeley, Dept Elect & Comp Sci, Berkeley, CA 97420 USA
[2] Univ Calif Berkeley, Ctr Computat Biol, Berkeley, CA 97420 USA
[3] MIT, Massachusetts Gen Hosp, Ragon Inst, Boston, MA 02139 USA
[4] Harvard Univ, Boston, MA 02139 USA
来源
BMC BIOINFORMATICS | 2016年 / 17卷
基金
美国国家卫生研究院;
关键词
Single-Cell; RNA-Seq; Dimensionality reduction; GENE-EXPRESSION; HETEROGENEITY; RECONSTRUCTION; REGULATORS; DYNAMICS; GROWTH;
D O I
10.1186/s12859-016-1176-5
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: A key challenge in the emerging field of single-cell RNA-Seq is to characterize phenotypic diversity between cells and visualize this information in an informative manner. A common technique when dealing with high-dimensional data is to project the data to 2 or 3 dimensions for visualization. However, there are a variety of methods to achieve this result and once projected, it can be difficult to ascribe biological significance to the observed features. Additionally, when analyzing single-cell data, the relationship between cells can be obscured by technical confounders such as variable gene capture rates. Results: To aid in the analysis and interpretation of single-cell RNA-Seq data, we have developed FastProject, a software tool which analyzes a gene expression matrix and produces a dynamic output report in which two-dimensional projections of the data can be explored. Annotated gene sets (referred to as gene ` signatures') are incorporated so that features in the projections can be understood in relation to the biological processes they might represent. FastProject provides a novel method of scoring each cell against a gene signature so as to minimize the effect of missed transcripts as well as a method to rank signature-projection pairings so that meaningful associations can be quickly identified. Additionally, FastProject is written with a modular architecture and designed to serve as a platform for incorporating and comparing new projection methods and gene selection algorithms. Conclusions: Here we present FastProject, a software package for two-dimensional visualization of single cell data, which utilizes a plethora of projection methods and provides a way to systematically investigate the biological relevance of these low dimensional representations by incorporating domain knowledge.
引用
收藏
页数:12
相关论文
共 36 条
[1]   viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia [J].
Amir, El-ad David ;
Davis, Kara L. ;
Tadmor, Michelle D. ;
Simonds, Erin F. ;
Levine, Jacob H. ;
Bendall, Sean C. ;
Shenfeld, Daniel K. ;
Krishnaswamy, Smita ;
Nolan, Garry P. ;
Pe'er, Dana .
NATURE BIOTECHNOLOGY, 2013, 31 (06) :545-+
[2]   Unbiased Reconstruction of a Mammalian Transcriptional Network Mediating Pathogen Responses [J].
Amit, Ido ;
Garber, Manuel ;
Chevrier, Nicolas ;
Leite, Ana Paula ;
Donner, Yoni ;
Eisenhaure, Thomas ;
Guttman, Mitchell ;
Grenier, Jennifer K. ;
Li, Weibo ;
Zuk, Or ;
Schubert, Lisa A. ;
Birditt, Brian ;
Shay, Tal ;
Goren, Alon ;
Zhang, Xiaolan ;
Smith, Zachary ;
Deering, Raquel ;
McDonald, Rebecca C. ;
Cabili, Moran ;
Bernstein, Bradley E. ;
Rinn, John L. ;
Meissner, Alex ;
Root, David E. ;
Hacohen, Nir ;
Regev, Aviv .
SCIENCE, 2009, 326 (5950) :257-263
[3]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[4]   Mesenchymal Differentiation Mediated by NF-κB Promotes Radiation Resistance in Glioblastoma [J].
Bhat, Krishna P. L. ;
Balasubramaniyan, Veerakumar ;
Vaillant, Brian ;
Ezhilarasan, Ravesanker ;
Hummelink, Karlijn ;
Hollingsworth, Faith ;
Wani, Khalida ;
Heathcock, Lindsey ;
James, Johanna D. ;
Goodman, Lindsey D. ;
Conroy, Siobhan ;
Long, Lihong ;
Lelic, Nina ;
Wang, Suzhen ;
Gumin, Joy ;
Raj, Divya ;
Kodama, Yoshinori ;
Raghunathan, Aditya ;
Olar, Adriana ;
Joshi, Kaushal ;
Pelloski, Christopher E. ;
Heimberger, Amy ;
Kim, Se Hoon ;
Cahill, Daniel P. ;
Rao, Ganesh ;
Den Dunnen, Wilfred F. A. ;
Boddeke, Hendrikus W. G. M. ;
Phillips, Heidi S. ;
Nakano, Ichiro ;
Lang, Frederick F. ;
Colman, Howard ;
Sulman, Erik P. ;
Aldape, Kenneth .
CANCER CELL, 2013, 24 (03) :331-346
[5]  
Brennecke P, 2013, NAT METHODS, V10, P1093, DOI [10.1038/nmeth.2645, 10.1038/NMETH.2645]
[6]   Exploiting tumour hypoxia in cancer treatment [J].
Brown, JM ;
William, WR .
NATURE REVIEWS CANCER, 2004, 4 (06) :437-447
[7]   Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells [J].
Buettner, Florian ;
Natarajan, Kedar N. ;
Casale, F. Paolo ;
Proserpio, Valentina ;
Scialdone, Antonio ;
Theis, Fabian J. ;
Teichmann, Sarah A. ;
Marioni, John C. ;
Stegie, Oliver .
NATURE BIOTECHNOLOGY, 2015, 33 (02) :155-160
[8]   REMARKS ON PARALLEL ANALYSIS [J].
BUJA, A ;
EYUBOGLU, N .
MULTIVARIATE BEHAVIORAL RESEARCH, 1992, 27 (04) :509-540
[9]  
Campbell Kieran., 2015, bioRxiv, P027219, DOI [10.1101/027219, DOI 10.1101/027219]
[10]   Single-Cell RNA-Seq Reveals Dynamic, Random Monoallelic Gene Expression in Mammalian Cells [J].
Deng, Qiaolin ;
Ramskold, Daniel ;
Reinius, Bjorn ;
Sandberg, Rickard .
SCIENCE, 2014, 343 (6167) :193-196