Hamiltonian model of heat conductivity and Fourier law

被引:7
作者
Gruber, C [1 ]
Lesne, A
机构
[1] Ecole Polytech Fed Lausanne, Inst Theorie Phenomenes Phys, CH-1015 Lausanne, Switzerland
[2] Univ Paris 06, Phys Theor Liquides Lab, F-75252 Paris, France
关键词
Fourier law; heat conductivity; nonequilibrium states; thermodynamics of irreversible processes; entropy production;
D O I
10.1016/j.physa.2004.12.022
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the stationary nonequilibrium states of a quasi one-dimensional system of heavy particles whose interaction is mediated by purely elastic collisions with light particles, in contact at the boundary with two heat baths with fixed temperatures T+ and T-. It is shown that Fourier law is satisfied with a thermal conductivity proportional to root T(x) where T(x) is the local temperature. Entropy flux and entropy production are also investigated. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:358 / 372
页数:15
相关论文
共 17 条
[1]  
Baron Fourier J.B.J., 1822, THEORIE ANAL CHALEUR
[2]  
BONETTO F, 2001, P 13 INT C MATH PHYS, P128
[3]  
CALLEN HB, 1963, THERMODYNAMICS
[4]   Particles, maps and irreversible thermodynamics [J].
Cohen, EGD ;
Rondoni, L .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 306 (1-4) :117-128
[5]   Heat conduction in a one-dimensional gas of elastically colliding particles of unequal masses [J].
Dhar, A .
PHYSICAL REVIEW LETTERS, 2001, 86 (16) :3554-3557
[6]   Temperature profiles in Hamiltonian heat conduction [J].
Eckmann, JP ;
Young, LS .
EUROPHYSICS LETTERS, 2004, 68 (06) :790-796
[7]   Entropy production in nonlinear, thermally driven Hamiltonian systems [J].
Eckmann, JP ;
Pillet, CA ;
Rey-Bellet, L .
JOURNAL OF STATISTICAL PHYSICS, 1999, 95 (1-2) :305-331
[8]  
FERMI E, 1955, LA1940, DOI [10.2172/4376203, DOI 10.2172/4376203]
[9]   Simple one-dimensional model of heat conduction which obeys Fourier's law [J].
Garrido, PL ;
Hurtado, PI ;
Nadrowski, B .
PHYSICAL REVIEW LETTERS, 2001, 86 (24) :5486-5489
[10]   On the second law of thermodynamics and the piston problem [J].
Gruber, C ;
Pache, S ;
Lesne, A .
JOURNAL OF STATISTICAL PHYSICS, 2004, 117 (3-4) :739-772