ATP-dependent chromatin remodeling factors: Nucleosome shufflers with many missions

被引:101
作者
Varga-Weisz, P [1 ]
机构
[1] Marie Curie Res Inst, Surrey RH8 0TL, England
关键词
DNA superhelical torsion; chromatin domain; Bromodomain; histone code; DNA repair;
D O I
10.1038/sj.onc.1204332
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This review addresses recent developments in the field of ATP-dependent chromatin remodeling factors. These factors use the energy of ATP hydrolysis to introduce superhelical torsion into DNA, which suggests a common mechanistic basis of action. Chromatin remodeling factors function both in transcriptional activation and repression, but they may hale roles outside of transcriptional regulation such as DNA repair. A study of the nucleosome dependent ATPase ISWI in yeast illustrates the involvement of ATP-dependent chromatin remodeling in transcriptional repression by setting up inaccessible chromatin structures at promoters. However, factors such as ISWI are also involved in the restructuring of large chromatin domains and even whole chromosomes. Transcriptional regulation by ATP-dependent chromatin remodeling factors occurs in concert with histone modifying enzymes such as histone acetyltransferases and histone deacetylases: In yeast, SWI/SNF targeting is a requirement for histone acetyltransferases activity at promoters that are active at late stages of mitosis, when the chromatin is still condensed, This demonstrates that ATP-dependent remodeling factors facilitate covalent histone modifications. However, they are also regulated by histone modifications and in some circumstances they function in parallel with histone modifications towards the same goal.
引用
收藏
页码:3076 / 3085
页数:10
相关论文
共 95 条
[1]   Disruption of the plant gene MOM releases transcriptional silencing of methylated genes [J].
Amedeo, P ;
Habu, Y ;
Afsar, K ;
Scheid, OM ;
Paszkowski, J .
NATURE, 2000, 405 (6783) :203-206
[2]   A SWI/SNF-related chromatin remodeling complex, E-RC1, is required for tissue-specific transcriptional regulation by EKLF in vitro [J].
Armstrong, JA ;
Bieker, JJ ;
Emerson, BM .
CELL, 1998, 95 (01) :93-104
[3]   Histone deacetylases: transcriptional repression with SINers and NuRDs [J].
Ayer, DE .
TRENDS IN CELL BIOLOGY, 1999, 9 (05) :193-198
[4]  
Bazett-Jones DP, 1999, MOL CELL BIOL, V19, P1470
[5]   Gene activation by histone and factor acetyltransferases [J].
Berger, SL .
CURRENT OPINION IN CELL BIOLOGY, 1999, 11 (03) :336-341
[6]   BRCA1 is associated with a human SWI/SNF-related complex: Linking chromatin remodeling to breast cancer [J].
Bochar, DA ;
Wang, L ;
Beniya, H ;
Kinev, A ;
Xue, YT ;
Lane, WS ;
Wang, WD ;
Kashanchi, F ;
Shiekhattar, R .
CELL, 2000, 102 (02) :257-265
[7]   A family of chromatin remodeling factors related to Williams syndrome transcription factor [J].
Bochar, DA ;
Savard, J ;
Wang, WD ;
Lafleur, DW ;
Moore, P ;
Côté, J ;
Shiekhattar, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (03) :1038-1043
[8]   The many HATs of transcription coactivators [J].
Brown, CE ;
Lechner, T ;
Howe, L ;
Workman, JL .
TRENDS IN BIOCHEMICAL SCIENCES, 2000, 25 (01) :15-19
[9]   Disruption of downstream chromatin directed by a transcriptional activator [J].
Brown, SA ;
Kingston, RE .
GENES & DEVELOPMENT, 1997, 11 (23) :3116-3121
[10]   c-MYC interacts with INI1/hSNF5 and requires the SWI/SNF complex for transactivation function [J].
Cheng, SWG ;
Davies, KP ;
Yung, E ;
Beltran, RJ ;
Yu, J ;
Kalpana, GV .
NATURE GENETICS, 1999, 22 (01) :102-105