Contribution of NFP LysM Domains to the Recognition of Nod Factors during the Medicago truncatula/Sinorhizobium meliloti Symbiosis

被引:53
作者
Bensmihen, Sandra [1 ,2 ]
de Billy, Francoise [1 ,2 ]
Gough, Clare [1 ,2 ]
机构
[1] INRA, LIPM, F-31326 Castanet Tolosan, France
[2] CNRS, LIPM, Castanet Tolosan, France
来源
PLOS ONE | 2011年 / 6卷 / 11期
关键词
RECEPTOR-LIKE KINASES; RHIZOBIUM-MELILOTI; ARABIDOPSIS-THALIANA; TRUNCATULA CONTROLS; NODULATION FACTORS; FACTOR PERCEPTION; HOST-SPECIFICITY; GENE; BINDING; PROTEIN;
D O I
10.1371/journal.pone.0026114
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The root nodule nitrogen fixing symbiosis between legume plants and soil bacteria called rhizobia is of great agronomical and ecological interest since it provides the plant with fixed atmospheric nitrogen. The establishment of this symbiosis is mediated by the recognition by the host plant of lipo-chitooligosaccharides called Nod Factors (NFs), produced by the rhizobia. This recognition is highly specific, as precise NF structures are required depending on the host plant. Here, we study the importance of different LysM domains of a LysM-Receptor Like Kinase (LysM-RLK) from Medicago truncatula called Nod factor perception (NFP) in the recognition of different substitutions of NFs produced by its symbiont Sinorhizobium meliloti. These substitutions are a sulphate group at the reducing end, which is essential for host specificity, and a specific acyl chain at the non-reducing end, that is critical for the infection process. The NFP extracellular domain (ECD) contains 3 LysM domains that are predicted to bind NFs. By swapping the whole ECD or individual LysM domains of NFP for those of its orthologous gene from pea, SYM10 (a legume plant that interacts with another strain of rhizobium producing NFs with different substitutions), we showed that NFP is not directly responsible for specific recognition of the sulphate substitution of S. meliloti NFs, but probably interacts with the acyl substitution. Moreover, we have demonstrated the importance of the NFP LysM2 domain for rhizobial infection and we have pinpointed the importance of a single leucine residue of LysM2 in that step of the symbiosis. Together, our data put into new perspective the recognition of NFs in the different steps of symbiosis in M. truncatula, emphasising the probable existence of a missing component for early NF recognition and reinforcing the important role of NFP for NF recognition during rhizobial infection.
引用
收藏
页数:11
相关论文
共 43 条
[1]   Arabidopsis thaliana Pattern Recognition Receptors for Bacterial Elongation Factor Tu and Flagellin Can Be Combined to Form Functional Chimeric Receptors [J].
Albert, Markus ;
Jehle, Anna K. ;
Mueller, Katharina ;
Eisele, Claudia ;
Lipschis, Martin ;
Felix, Georg .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (25) :19035-19042
[2]   RHIZOBIUM-MELILOTI LIPOOLIGOSACCHARIDE NODULATION FACTORS - DIFFERENT STRUCTURAL REQUIREMENTS FOR BACTERIAL ENTRY INTO TARGET ROOT HAIR-CELLS AND INDUCTION OF PLANT SYMBIOTIC DEVELOPMENTAL RESPONSES [J].
ARDOUREL, M ;
DEMONT, N ;
DEBELLE, FD ;
MAILLET, F ;
DEBILLY, F ;
PROME, JC ;
DENARIE, J ;
TRUCHET, G .
PLANT CELL, 1994, 6 (10) :1357-1374
[3]   The Medicago truncatula lysine motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes [J].
Arrighi, Jean-Francois ;
Barre, Annick ;
Ben Amor, Besma ;
Bersoult, Anne ;
Soriano, Lidia Campos ;
Mirabella, Rossana ;
de Carvalho-Niebel, Fernanda ;
Journet, Etienne-Pascal ;
Gherardi, Michele ;
Huguet, Thierry ;
Geurts, Rene ;
Denarie, Jean ;
Rouge, Pierre ;
Gough, Clare .
PLANT PHYSIOLOGY, 2006, 142 (01) :265-279
[4]   The structure of a LysM domain from E-coli membrane-bound lytic murein transglycosylase D (MltD) [J].
Bateman, A ;
Bycroft, M .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 299 (04) :1113-1119
[5]   Improved Characterization of Nod Factors and Genetically Based Variation in LysM Receptor Domains Identify Amino Acids Expendable for Nod Factor Recognition in Lotus spp. [J].
Bek, Anita S. ;
Sauer, Jorgen ;
Thygesen, Mikkel B. ;
Duus, Jens O. ;
Petersen, Bent O. ;
Thirup, Soren ;
James, Euan ;
Jensen, Knud J. ;
Stougaard, Jens ;
Radutoiu, Simona .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2010, 23 (01) :58-66
[6]   The NFP locus of Medicago truncatula controls an early step of Nod factor signal transduction upstream of a rapid calcium flux and root hair deformation [J].
Ben Amor, B ;
Shaw, SL ;
Oldroyd, GED ;
Maillet, F ;
Penmetsa, RV ;
Cook, D ;
Long, SR ;
Dénarié, J ;
Gough, C .
PLANT JOURNAL, 2003, 34 (04) :495-506
[7]   Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations [J].
Boisson-Dernier, A ;
Chabaud, M ;
Garcia, F ;
Bécard, G ;
Rosenberg, C ;
Barker, DG .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2001, 14 (06) :695-700
[8]   LysM, a widely distributed protein motif for binding to (peptido)glycans [J].
Buist, Girbe ;
Steen, Anton ;
Kok, Jan ;
Kuipers, Oscar R. .
MOLECULAR MICROBIOLOGY, 2008, 68 (04) :838-847
[9]   Four genes of Medicago truncatula controlling components of a nod factor transduction pathway [J].
Catoira, R ;
Galera, C ;
de Billy, F ;
Penmetsa, RV ;
Journet, EP ;
Maillet, F ;
Rosenberg, C ;
Cook, D ;
Gough, C ;
Dénarié, J .
PLANT CELL, 2000, 12 (09) :1647-1665
[10]  
Catoira R, 2001, DEVELOPMENT, V128, P1507