Electrochemical performance of mixed crystallographic phase nanotubes and nanosheets of titania and titania-carbon/silver composites for lithium-ion batteries

被引:10
作者
Das, Shyamal K. [1 ]
Bhattacharyya, Aninda J. [1 ]
机构
[1] Indian Inst Sci, Solid State & Struct Chem Unit, Bangalore 560012, Karnataka, India
关键词
Titanium dioxide; Anatase; TiO2 (B); Ag nanoparticles; Insertion; Lithium-ion battery; TIO2; ANATASE; NEGATIVE ELECTRODES; CHEMICAL SYNTHESIS; ANODE PROPERTIES; PARTICLE-SIZE; NANOWIRES; STORAGE; NANORODS; NANOSTRUCTURES; NANOPARTICLES;
D O I
10.1016/j.matchemphys.2011.07.026
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The role of homogeneity in ex situ grown conductive coatings and dimensionality in the lithium storage properties of TiO2 is discussed here. TiO2 nanotube and nanosheet comprising of mixed crystallographic phases of anatase and TiO2 (B) have been synthesized by an optimized hydrothermal method. Surface modifications of TiO2 nanotube are realized via coating the nanotube with Ag nanoparticles and amorphous carbon. The first discharge cycle capacity (at current rate = 10 mA g(-1)) for TiO2 nanotube and nanosheet were 355 mAh g(-1) and 225 mAhg(-1), respectively. The conductive surface coating stabilized the titania crystallographic structure during lithium insertion-deinsertion processes via reduction in the accessibility of lithium ions to the trapping sites. The irreversible capacity is beneficially minimized from 110 mAh g(-1) for TiO2 nanotubes to 96 mAh g(-1) and 57 mAhg(-1) respectively for Ag and carbon modified TiO2 nanotubes. The homogeneously coated amorphous carbon over TiO2 renders better lithium battery performance than randomly distributed Ag nanoparticles coated TiO2 due to efficient hopping of electrons. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:569 / 576
页数:8
相关论文
共 49 条
  • [31] Rate characteristics of anatase TiO2 nanotubes and nanorods for lithium battery anode materials at room temperature
    Kim, Jinyoung
    Cho, Jaephil
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (06) : A542 - A546
  • [32] Decontamination of 2-chloroethyl ethylsulfide using titanate nanoscrolls
    Kleinhammes, A
    Wagner, GW
    Kulkarni, H
    Jia, YY
    Zhang, Q
    Qin, LC
    Wu, Y
    [J]. CHEMICAL PHYSICS LETTERS, 2005, 411 (1-3) : 81 - 85
  • [33] Titanate nanotubes and nanorods prepared from rutile powder
    Lan, Y
    Gao, XP
    Zhu, HY
    Zheng, ZF
    Yan, TY
    Wu, F
    Ringer, SP
    Song, DY
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2005, 15 (08) : 1310 - 1318
  • [34] Layered nanostructures of delaminated anatase: Nanosheets and nanotubes
    Mogilevsky, Gregory
    Chen, Qiang
    Kulkarni, Harsha
    Kleinhammes, Alfred
    Mullins, William M.
    Wu, Yue
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (09) : 3239 - 3246
  • [35] Lithium intercalation in TiO2 modifications
    Nuspl, G
    Yoshizawa, K
    Yamabe, T
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 1997, 7 (12) : 2529 - 2536
  • [36] Alternative Li-Ion Battery Electrode Based on Self-Organized Titania Nanotubes
    Ortiz, Gregorio F.
    Hanzu, Ilie
    Djenizian, Thierry
    Lavela, Pedro
    Tirado, Jose L.
    Knauth, Philippe
    [J]. CHEMISTRY OF MATERIALS, 2009, 21 (01) : 63 - 67
  • [37] Electrode engineering of nanoparticles for lithium-ion batteries-Role of dispersion technique
    Patey, T. J.
    Hintennach, A.
    La Mantia, F.
    Novak, P.
    [J]. JOURNAL OF POWER SOURCES, 2009, 189 (01) : 590 - 593
  • [38] Higher charge/discharge rates of lithium-ions across engineered TiO2 surfaces leads to enhanced battery performance
    Sun, Cheng Hua
    Yang, Xiao Hua
    Chen, Jun Song
    Li, Zhen
    Lou, Xiong Wen
    Li, Chunzhong
    Smith, Sean C.
    Lu, Gao Qing
    Yang, Hua Gui
    [J]. CHEMICAL COMMUNICATIONS, 2010, 46 (33) : 6129 - 6131
  • [39] Issues and challenges facing rechargeable lithium batteries
    Tarascon, JM
    Armand, M
    [J]. NATURE, 2001, 414 (6861) : 359 - 367
  • [40] Monodispersed hard carbon spherules with uniform nanopores
    Wang, Q
    Li, H
    Chen, LQ
    Huang, XJ
    [J]. CARBON, 2001, 39 (14) : 2211 - 2214