Density Gradient Ultracentrifugation of Nanotubes: Interplay of Bundling and Surfactants Encapsulation

被引:135
作者
Bonaccorso, F. [1 ]
Hasan, T. [1 ]
Tan, P. H. [1 ,2 ]
Sciascia, C. [1 ]
Privitera, G. [1 ]
Di Marco, G. [3 ]
Gucciardi, P. G. [3 ]
Ferrari, A. C. [1 ]
机构
[1] Univ Cambridge, Dept Engn, Cambridge CB3 0FA, England
[2] Inst Semicond, Stale Key Lab Superlatt & Microstruct, Beijing 100083, Peoples R China
[3] CNR, Ist Per & Proc Chim Fis, I-98158 Messina, Italy
基金
英国工程与自然科学研究理事会;
关键词
WALLED CARBON NANOTUBES; SODIUM DODECYL-SULFATE; EXCITON ENERGY-TRANSFER; OPTICAL-PROPERTIES; PREFERENTIAL GROWTH; AQUEOUS DISPERSIONS; RAMAN-SPECTROSCOPY; LENGTH SEPARATION; AMIDE SOLVENTS; SINGLE;
D O I
10.1021/jp1030174
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Density gradient ultracentrifugation (DGU) has emerged as a promising tool to prepare chirality enriched nanotube samples. Here, we assess the performance of different surfactants for DGU. Bile salts (e.g., sodium cholate (SC), sodium deoxycholate (SDC), and sodium taurodeoxycholate (TDC)) are more effective in individualizing Single Wall Carbon Nanotubes (SWNTs) compared to linear chain surfactants (e.g., sodium dodecylbenzene sulfonate (SDBS) and sodium dodecylsulfate (SDS)) and better suited for DGU. Using SC, a narrower diameter distribution (0.69-0.81 nm) is achieved through a single DGU step on CoMoCAT tubes, when compared to SDC and TDC (0.69-0.89 nm). No selectivity is obtained using SDBS. due to its ineffectiveness in debundling. We assign the reduce selectivity of dihydroxy bile salts (S DC and TDC) in comparison with trihydroxy SC to the formation of secondary micelles. This is determined by the number and position of hydroxyl ( OH) groups on the a-side of the steroid backbone. We also enrich CoMoCAT SWNT in the 0.84-0.92 nm range using the Pluronic F98 triblock copolymer. Mixtures of bile salts (SC) and linear chain surfactants (SOS) are used to enrich metallic and semiconducting laser-ablation grown SWNTs. We demonstrate enrichment of a single chirality, (6,5), combining diameter and metallic versus semiconductillg separation on CoMoCAT samples.
引用
收藏
页码:17267 / 17285
页数:19
相关论文
共 196 条
[101]   Polarized photoluminescence excitation spectroscopy of single-walled carbon nanotubes [J].
Lefebvre, J. ;
Finnie, P. .
PHYSICAL REVIEW LETTERS, 2007, 98 (16)
[102]   Photoluminescence from single-walled carbon nanotubes: a comparison between suspended and micelle-encapsulated nanotubes [J].
Lefebvre, J ;
Fraser, JM ;
Homma, Y ;
Finnie, P .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2004, 78 (08) :1107-1110
[103]   Selective synthesis combined with chemical separation of single-walled carbon nanotubes for chirality selection [J].
Li, Xiaolin ;
Tu, Xiaomin ;
Zaric, Sasa ;
Welsher, Kevin ;
Seo, Won Seok ;
Zhao, Wei ;
Dai, Hongjie .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2007, 129 (51) :15770-+
[104]   Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method [J].
Li, YM ;
Mann, D ;
Rolandi, M ;
Kim, W ;
Ural, A ;
Hung, S ;
Javey, A ;
Cao, J ;
Wang, DW ;
Yenilmez, E ;
Wang, Q ;
Gibbons, JF ;
Nishi, Y ;
Dai, HJ .
NANO LETTERS, 2004, 4 (02) :317-321
[105]   Selective interaction of large or charge-transfer aromatic molecules with metallic single-wall carbon nanotubes: Critical role of the molecular size and orientation [J].
Lu, J ;
Nagase, S ;
Zhang, XW ;
Wang, D ;
Ni, M ;
Maeda, Y ;
Wakahara, T ;
Nakahodo, T ;
Tsuchiya, T ;
Akasaka, T ;
Gao, ZX ;
Yu, DP ;
Ye, HQ ;
Mei, WN ;
Zhou, YS .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (15) :5114-5118
[106]   Dispersion of single-walled carbon nanotube bundles in nonaqueous solution [J].
Maeda, Y ;
Kimura, S ;
Hirashima, Y ;
Kanda, M ;
Lian, YF ;
Wakahara, T ;
Akasaka, T ;
Hasegawa, T ;
Tokumoto, H ;
Shimizu, T ;
Kataura, H ;
Miyauchi, Y ;
Maruyama, S ;
Kobayashi, K ;
Nagase, S .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (48) :18395-18397
[107]   Femtonewton Force Sensing with Optically Trapped Nanotubes [J].
Marago, O. M. ;
Jones, P. H. ;
Bonaccorso, F. ;
Scardaci, V. ;
Gucciardi, P. G. ;
Rozhin, A. G. ;
Ferrari, A. C. .
NANO LETTERS, 2008, 8 (10) :3211-3216
[108]   Optical trapping of carbon nanotubes [J].
Marago, O. M. ;
Gucciardi, P. G. ;
Bonaccorso, F. ;
Calogero, G. ;
Scardaci, V. ;
Rozhin, A. G. ;
Ferrari, A. C. ;
Jones, P. H. ;
Saija, R. ;
Borghese, F. ;
Denti, P. ;
Iati, M. A. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2008, 40 (07) :2347-2351
[109]   QUASI-ELASTIC LIGHT-SCATTERING STUDIES OF AQUEOUS BILIARY LIPID SYSTEMS - SIZE, SHAPE, AND THERMODYNAMICS OF BILE-SALT MICELLES [J].
MAZER, NA ;
CAREY, MC ;
KWASNICK, RF ;
BENEDEK, GB .
BIOCHEMISTRY, 1979, 18 (14) :3064-3075
[110]  
MEYER JC, 2005, PHYS REV LETT, V95, P4