Density Gradient Ultracentrifugation of Nanotubes: Interplay of Bundling and Surfactants Encapsulation

被引:135
作者
Bonaccorso, F. [1 ]
Hasan, T. [1 ]
Tan, P. H. [1 ,2 ]
Sciascia, C. [1 ]
Privitera, G. [1 ]
Di Marco, G. [3 ]
Gucciardi, P. G. [3 ]
Ferrari, A. C. [1 ]
机构
[1] Univ Cambridge, Dept Engn, Cambridge CB3 0FA, England
[2] Inst Semicond, Stale Key Lab Superlatt & Microstruct, Beijing 100083, Peoples R China
[3] CNR, Ist Per & Proc Chim Fis, I-98158 Messina, Italy
基金
英国工程与自然科学研究理事会;
关键词
WALLED CARBON NANOTUBES; SODIUM DODECYL-SULFATE; EXCITON ENERGY-TRANSFER; OPTICAL-PROPERTIES; PREFERENTIAL GROWTH; AQUEOUS DISPERSIONS; RAMAN-SPECTROSCOPY; LENGTH SEPARATION; AMIDE SOLVENTS; SINGLE;
D O I
10.1021/jp1030174
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Density gradient ultracentrifugation (DGU) has emerged as a promising tool to prepare chirality enriched nanotube samples. Here, we assess the performance of different surfactants for DGU. Bile salts (e.g., sodium cholate (SC), sodium deoxycholate (SDC), and sodium taurodeoxycholate (TDC)) are more effective in individualizing Single Wall Carbon Nanotubes (SWNTs) compared to linear chain surfactants (e.g., sodium dodecylbenzene sulfonate (SDBS) and sodium dodecylsulfate (SDS)) and better suited for DGU. Using SC, a narrower diameter distribution (0.69-0.81 nm) is achieved through a single DGU step on CoMoCAT tubes, when compared to SDC and TDC (0.69-0.89 nm). No selectivity is obtained using SDBS. due to its ineffectiveness in debundling. We assign the reduce selectivity of dihydroxy bile salts (S DC and TDC) in comparison with trihydroxy SC to the formation of secondary micelles. This is determined by the number and position of hydroxyl ( OH) groups on the a-side of the steroid backbone. We also enrich CoMoCAT SWNT in the 0.84-0.92 nm range using the Pluronic F98 triblock copolymer. Mixtures of bile salts (SC) and linear chain surfactants (SOS) are used to enrich metallic and semiconducting laser-ablation grown SWNTs. We demonstrate enrichment of a single chirality, (6,5), combining diameter and metallic versus semiconductillg separation on CoMoCAT samples.
引用
收藏
页码:17267 / 17285
页数:19
相关论文
共 196 条
[11]   Covalent chemistry of single-wall carbon nanotubes [J].
Bahr, JL ;
Tour, JM .
JOURNAL OF MATERIALS CHEMISTRY, 2002, 12 (07) :1952-1958
[12]   Towards solutions of single-walled carbon nanotubes in common solvents [J].
Bergin, Shane D. ;
Nicolosi, Valeria ;
Streich, Philip V. ;
Giordani, Silvia ;
Sun, Zhenyu ;
Windle, Alan H. ;
Ryan, Peter ;
Niraj, N. Peter P. ;
Wang, Zhi-Tao T. ;
Carpenter, Leslie ;
Blau, Werner J. ;
Boland, John J. ;
Hamilton, James P. ;
Coleman, Jonathan N. .
ADVANCED MATERIALS, 2008, 20 (10) :1876-+
[13]   Fractionation of differentiating cells using density perturbation [J].
Bildirici, L ;
Rickwood, D .
JOURNAL OF IMMUNOLOGICAL METHODS, 2000, 240 (1-2) :93-99
[14]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]
[15]  
BRAAKE MK, 1965, SCIENCE, V148, P387
[16]   PHOTOMETRIC SCANNING OF CENTRIFUGED DENSITY GRADIENT COLUMNS [J].
BRAKKE, MK .
ANALYTICAL BIOCHEMISTRY, 1963, 5 (04) :271-&
[17]   ZONAL SEPARATIONS BY DENSITY-GRADIENT CENTRIFUGATION [J].
BRAKKE, MK .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1953, 45 (02) :275-290
[18]  
BRAKKE MYRON K., 1960, ADVANCES IN VIRUS RES, V7, P193
[19]   HIGH-RESOLUTION DENSITY GRADIENT SEDIMENTATION ANALYSIS [J].
BRITTEN, RJ ;
ROBERTS, RB .
SCIENCE, 1960, 131 (3392) :32-33
[20]   The Hofmeister series: salt and solvent effects on interfacial phenomena [J].
Cacace, MG ;
Landau, EM ;
Ramsden, JJ .
QUARTERLY REVIEWS OF BIOPHYSICS, 1997, 30 (03) :241-277