Replication fork dynamics and dynamic mutations: the fork-shift model of repeat instability

被引:70
作者
Cleary, JD
Pearson, CE
机构
[1] Univ Toronto, Dept Mol & Med Genet, Toronto, ON M5G 1X8, Canada
[2] Hosp Sick Children, Program Genet & Genom Biol, Toronto, ON M5G 1X8, Canada
基金
加拿大健康研究院;
关键词
D O I
10.1016/j.tig.2005.03.008
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Gene-specific repeat instability is responsible for > 36 human diseases. Active instability varies in a tissue-, developmental stage- and locus-specific manner and occurs in both proliferative and non-proliferative cells. In proliferative cells, DNA replication can contribute to repeat instability either by switching the direction of replication, which changes the repeat sequence that serves as the lagging-strand template (origin switching), or by shifting the location of the origin of replication without altering the replication direction (origin shifting). We propose that changes in the dynamics of replication-fork progression, or architecture, will alter the location of the repeat within the single-stranded lagging-strand template, thereby influencing instability (fork shifting). The fork-shift model, which does not require origin relocation, is influenced by cis-elements and trans-factors associated with driving and maintaining replication forks. The fork-shift model can explain some of the complex behaviours of repeat instability because it is dynamic and responsive to variations in epigenomic and locus activity.
引用
收藏
页码:272 / 280
页数:9
相关论文
共 65 条
[31]   Genomic context drives SCA7 CAG repeat instability, while expressed SCA7 cDNAs are intergenerationally and somatically stable in transgenic mice [J].
Libby, RT ;
Monckton, DG ;
Fu, YH ;
Martinez, RA ;
McAbney, JP ;
Lau, R ;
Einum, DD ;
Nichol, K ;
Ware, CB ;
Ptacek, LJ ;
Pearson, CE ;
La Spada, AR .
HUMAN MOLECULAR GENETICS, 2003, 12 (01) :41-50
[32]   Msh2 deficiency prevents in vivo somatic instability of the CAG repeat in Huntington disease transgenic mice [J].
Manley, K ;
Shirley, TL ;
Flaherty, L ;
Messer, A .
NATURE GENETICS, 1999, 23 (04) :471-473
[33]   Progression of somatic CTG repeat length heterogeneity in the blood cells of myotonic dystrophy patients [J].
Martorell, L ;
Monckton, DG ;
Gamez, J ;
Johnson, KJ ;
Gich, I ;
de Munain, AL ;
Baiget, M .
HUMAN MOLECULAR GENETICS, 1998, 7 (02) :307-312
[34]   Somatic instability of the myotonic dystrophy (CTG), repeat during human fetal development [J].
Martorell, L ;
Johnson, K ;
Boucher, CA ;
Baiget, M .
HUMAN MOLECULAR GENETICS, 1997, 6 (06) :877-880
[35]   Mosaicism of unstable CAG repeats in the brain of spinocerebellar ataxia type 2 [J].
Matsuura, T ;
Sasaki, H ;
Yabe, I ;
Hamada, K ;
Hamada, T ;
Shitara, M ;
Tashiro, K .
JOURNAL OF NEUROLOGY, 1999, 246 (09) :835-839
[36]  
Maurer DJ, 1996, MOL CELL BIOL, V16, P6617
[37]   Activation of the DNA replication checkpoint through RNA synthesis by primase [J].
Michael, WM ;
Ott, R ;
Fanning, E ;
Newport, J .
SCIENCE, 2000, 289 (5487) :2133-2137
[38]   Positioned to expand [J].
Mirkin, SM ;
Smirnova, EV .
NATURE GENETICS, 2002, 31 (01) :5-6
[39]   Hypermutable myotonic dystrophy CTG repeats in transgenic mice [J].
Monckton, DG ;
Coolbaugh, MI ;
Ashizawa, KT ;
Siciliano, MJ ;
Caskey, CT .
NATURE GENETICS, 1997, 15 (02) :193-196
[40]   Effect of CAT or AGG interruptions and CpG methylation on nucleosome assembly upon trinucleotide repeats on spinocerebellar ataxia, type 1 and fragile X syndrome [J].
Mulvihill, DJ ;
Edamura, KN ;
Hagerman, KA ;
Pearson, CE ;
Wang, YH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (06) :4498-4503