From proteins to proteomics

被引:30
作者
Bradshaw, RA
Burlingame, AL
机构
[1] Univ Cambridge, Dept Biochem, Cambridge CB2 1QW, England
[2] Univ Calif San Francisco, Dept Pharmaceut Chem, San Francisco, CA 94143 USA
关键词
mass spectrometry; 2D gel electrophoresis; protein-protein interactions; protein expression; co-/post-translational modifications; bioinformatics;
D O I
10.1080/15216540500091536
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
During the second half of the 20th century, biochemistry and subsequently molecular biology blossomed into the core upon which all biological and biomedical sciences now depend. A major part of these closely related disciplines has been the study of the structure and function of proteins and the diverse biological functions that they perform. Early experimentation necessarily focused on individual entities, selected mainly for their activities, but as technology improved there developed a tendency to look at proteins as larger, interactive groups or clusters. Spurred by the recent exponential production of genomic sequence data for a rapidly increasing number of species, protein chemistry has now evolved into a new discipline., proteomics. In addition to embracing the methods and approaches that have served protein scientists well in the past, it includes, and is perhaps best defined by, high-throughput analyses based in large part on 2D gel electrophoresis, MALDI and ESI mass spectrometry and combinatorial arrays. Proteomic targets include the identification of all genome products and a mapping of their interactions and expression profiles. These hold great promise for the identification of disease markers and drug targets, but are not without their challenges and pitfalls.
引用
收藏
页码:267 / 272
页数:6
相关论文
共 43 条
[1]   Mass spectrometry-based proteomics [J].
Aebersold, R ;
Mann, M .
NATURE, 2003, 422 (6928) :198-207
[2]   Candidate-based proteomics in the search for biomarkers of cardiovascular disease [J].
Anderson, L .
JOURNAL OF PHYSIOLOGY-LONDON, 2005, 563 (01) :23-60
[3]   The human plasma proteome - History, character, and diagnostic prospects [J].
Anderson, NL ;
Anderson, NG .
MOLECULAR & CELLULAR PROTEOMICS, 2002, 1 (11) :845-867
[4]  
[Anonymous], INTRO PROTEOMICS
[5]  
[Anonymous], HDB CELL SIGNALING
[6]   Protein identification by mass spectrometry - Issues to be considered [J].
Baldwin, MA .
MOLECULAR & CELLULAR PROTEOMICS, 2004, 3 (01) :1-9
[7]   Structural genomics: an overview [J].
Blundell, TL ;
Mizuguchi, K .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2000, 73 (05) :289-295
[8]   High-throughput crystallography for lead discovery in drug design [J].
Blundell, TL ;
Jhoti, H ;
Abell, C .
NATURE REVIEWS DRUG DISCOVERY, 2002, 1 (01) :45-54
[9]   Biomedical informatics for proteomics [J].
Boguski, MS ;
McIntosh, MW .
NATURE, 2003, 422 (6928) :233-237
[10]   A physical and functional map of the human TNF-α NF-κB signal transduction pathway [J].
Bouwmeester, T ;
Bauch, A ;
Ruffner, H ;
Angrand, PO ;
Bergamini, G ;
Croughton, K ;
Cruciat, C ;
Eberhard, D ;
Gagneur, J ;
Ghidelli, S ;
Hopf, C ;
Huhse, B ;
Mangano, R ;
Michon, AM ;
Schirle, M ;
Schlegl, J ;
Schwab, M ;
Stein, MA ;
Bauer, A ;
Casari, G ;
Drewes, G ;
Gavin, AC ;
Jackson, DB ;
Joberty, G ;
Neubauer, G ;
Rick, J ;
Kuster, B ;
Superti-Furga, G .
NATURE CELL BIOLOGY, 2004, 6 (02) :97-+