Parallel Euclidean distance transformations in Z(g)(n)

被引:8
作者
Eggers, H
机构
[1] Department of Applied Mathematics, University of Hamburg, D-20146 Hamburg
关键词
parallel Euclidean distance transformation; arbitrary dimensions;
D O I
10.1016/0167-8655(96)00017-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this letter, it is proven that the parallel distance transformations of Yamada and Huang-Mitchell are Euclidean distance transformations for pictures in Z(n) and in weighted grids Z(g)(n). This result also holds for the sequential-ordered propagation method of Ragnemalm.
引用
收藏
页码:751 / 757
页数:7
相关论文
共 7 条
[1]   DISTANCE TRANSFORMATIONS IN DIGITAL IMAGES [J].
BORGEFORS, G .
COMPUTER VISION GRAPHICS AND IMAGE PROCESSING, 1986, 34 (03) :344-371
[2]   DISTANCE TRANSFORMATIONS IN ARBITRARY DIMENSIONS [J].
BORGEFORS, G .
COMPUTER VISION GRAPHICS AND IMAGE PROCESSING, 1984, 27 (03) :321-345
[3]   A EUCLIDEAN DISTANCE TRANSFORM USING GRAYSCALE MORPHOLOGY DECOMPOSITION [J].
HUANG, CT ;
MITCHELL, OR .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1994, 16 (04) :443-448
[4]   THE EUCLIDEAN DISTANCE TRANSFORM IN ARBITRARY DIMENSIONS [J].
RAGNEMALM, I .
PATTERN RECOGNITION LETTERS, 1993, 14 (11) :883-888
[5]   NEIGHBORHOODS FOR DISTANCE TRANSFORMATIONS USING ORDERED PROPAGATION [J].
RAGNEMALM, I .
CVGIP-IMAGE UNDERSTANDING, 1992, 56 (03) :399-409
[6]  
RAGNEMALM I, 1993, LINKOPING STUDIES SC
[7]  
Yamada H., 1984, Seventh International Conference on Pattern Recognition (Cat. No. 84CH2046-1), P69