Data dimensionality estimation methods: a survey

被引:176
作者
Camastra, F [1 ]
机构
[1] Univ Genoa, DISI, INFM, I-16146 Genoa, Italy
关键词
intrinsic dimensionality; topological dimension; Fukunaga-Olsen's algorithm; fractal dimension; multidimensional scaling;
D O I
10.1016/S0031-3203(03)00176-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, data dimensionality estimation methods are reviewed. The estimation of the dimensionality of a data set is a classical problem of pattern recognition. There are some good reviews (Algorithms for Clustering Data, Prentice-Hall, Englewood Cliffs, NJ, 1988) in literature but they do not include more recent developments based on fractal techniques and neural autoassociators. The aim of this paper is to provide an up-to-date survey of the dimensionality estimation methods of a data set, paying special attention to the fractal-based methods. (C) 2003 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:2945 / 2954
页数:10
相关论文
共 85 条
[71]  
SMITH RL, 1992, SFI STUDIES SCI COMP, V12, P115
[72]   Speech dimensionality analysis on hypercubical self-organizing maps [J].
Somervuo, P .
NEURAL PROCESSING LETTERS, 2003, 17 (02) :125-136
[73]  
Takens F., 1984, DYNAMICAL SYSTEMS BI, P99
[74]  
Takens F., 1981, LECT NOTES MATH, V1980, P366, DOI [DOI 10.1007/BFB0091924, 10.1007/BFb0091924]
[75]   A global geometric framework for nonlinear dimensionality reduction [J].
Tenenbaum, JB ;
de Silva, V ;
Langford, JC .
SCIENCE, 2000, 290 (5500) :2319-+
[76]   STATISTICAL PRECISION OF DIMENSION ESTIMATORS [J].
THEILER, J .
PHYSICAL REVIEW A, 1990, 41 (06) :3038-3051
[77]   TESTING FOR NONLINEARITY IN TIME-SERIES - THE METHOD OF SURROGATE DATA [J].
THEILER, J ;
EUBANK, S ;
LONGTIN, A ;
GALDRIKIAN, B ;
FARMER, JD .
PHYSICA D, 1992, 58 (1-4) :77-94
[78]   LACUNARITY IN A BEST ESTIMATOR OF FRACTAL DIMENSION [J].
THEILER, J .
PHYSICS LETTERS A, 1988, 133 (4-5) :195-200
[79]   Inverse covariation of spectral density and correlation dimension in cyclic EEG dynamics of the human brain [J].
Tirsch, WS ;
Keidel, M ;
Perz, S ;
Scherb, H ;
Sommer, G .
BIOLOGICAL CYBERNETICS, 2000, 82 (01) :1-14
[80]   Suboptimal minimum cluster volume cover-based method for measuring fractal dimension [J].
Tolle, CR ;
McJunkin, TR ;
Gorsich, DJ .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (01) :32-41