Entanglement renormalization and topological order

被引:133
作者
Aguado, Miguel [1 ]
Vidal, Guifre [2 ]
机构
[1] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[2] Univ Queensland, Sch Phys Sci, Brisbane, Qld 4072, Australia
关键词
D O I
10.1103/PhysRevLett.100.070404
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The multiscale entanglement renormalization ansatz (MERA) is argued to provide a natural description for topological states of matter. The case of Kitaev's toric code is analyzed in detail and shown to possess a remarkably simple MERA description leading to distillation of the topological degrees of freedom at the top of the tensor network. Kitaev states on an infinite lattice are also shown to be a fixed point of the renormalization group flow associated with entanglement renormalization. All of these results generalize to arbitrary quantum double models.
引用
收藏
页数:4
相关论文
共 21 条
[1]  
AGUADO M, ARXIV07120348
[2]  
[Anonymous], 1966, Physics Physique Fizika, DOI DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.2.263
[3]   Topological quantum memory [J].
Dennis, E ;
Kitaev, A ;
Landahl, A ;
Preskill, J .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (09) :4452-4505
[4]  
EVENBLY G, ARXIV08012449
[5]  
EVENBLY G, ARXIV07100692, P12720
[6]   Renormalization group theory: Its basis and formulation in statistical physics [J].
Fisher, ME .
REVIEWS OF MODERN PHYSICS, 1998, 70 (02) :653-681
[7]  
Gottesman D., 1997, STABILIZER CODES QUA
[8]   Bipartite entanglement and entropic boundary law in lattice spin systems [J].
Hamma, A ;
Ionicioiu, R ;
Zanardi, P .
PHYSICAL REVIEW A, 2005, 71 (02)
[9]   Topological entanglement entropy [J].
Kitaev, A ;
Preskill, J .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[10]   Fault-tolerant quantum computation by anyons [J].
Kitaev, AY .
ANNALS OF PHYSICS, 2003, 303 (01) :2-30