The mammalian RNA polymerase II C-terminal domain interacts with RNA to suppress transcription-coupled 3′ end formation

被引:32
作者
Kaneko, S [1 ]
Manley, JL [1 ]
机构
[1] Columbia Univ, Dept Biol Sci, New York, NY 10027 USA
关键词
D O I
10.1016/j.molcel.2005.08.033
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
RNA polymerase II plays a critical role not only in transcription of mRNA precursors but also in their subsequent processing. This later function is mediated primarily by the C-terminal domain (CTD) of the enzyme's largest subunit, a unique, repetitive structure conserved throughout eukaryotes and known to interact with a number of different proteins during the transcription cycle. Here, we show that the mammalian CTD also interacts with RNA in a sequence-specific manner. We use a variety of RNA binding assays, including SELEX, to characterize the interaction in vitro and a modified chromatin immunoprecipitation (ChIP) assay to provide evidence that it also occurs in vivo. Transfection assays with the CTD binding consensus situated downstream of a polyadenylation signal indicate that the sequence can suppress mRNA 3' end formation and transcription termination, and in vitro assays indicate that the inhibition of processing is CTD dependent. Our results provide an unexpected function for CTD in modulating gene expression.
引用
收藏
页码:91 / 103
页数:13
相关论文
共 47 条
[1]  
Albert A, 1999, J CELL SCI, V112, P2493
[2]   MAZ-DEPENDENT TERMINATION BETWEEN CLOSELY SPACED HUMAN-COMPLEMENT GENES [J].
ASHFIELD, R ;
PATEL, AJ ;
BOSSONE, SA ;
BROWN, H ;
CAMPBELL, RD ;
MARCU, KB ;
PROUDFOOT, NJ .
EMBO JOURNAL, 1994, 13 (23) :5656-5667
[3]   Cleavage/polyadenylation factor IA associates with the carboxyl-terminal domain of RNA polymerase II in Saccharomyces cerevisiae [J].
Barillà, D ;
Lee, BA ;
Proudfoot, NJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (02) :445-450
[4]   Patterns of variant polyadenylation signal usage in human genes [J].
Beaudoing, E ;
Freier, S ;
Wyatt, JR ;
Claverie, JM ;
Gautheret, D .
GENOME RESEARCH, 2000, 10 (07) :1001-1010
[5]   RNA polymerase II carboxy-terminal domain phosphorylation is required for cotranscriptional pre-mRNA splicing and 3′-end formation [J].
Bird, G ;
Zorio, DAR ;
Bentley, DL .
MOLECULAR AND CELLULAR BIOLOGY, 2004, 24 (20) :8963-8969
[6]   Coupling termination of transcription to messenger RNA maturation in yeast [J].
Birse, CE ;
Minvielle-Sebastia, L ;
Lee, BA ;
Keller, W ;
Proudfoot, NJ .
SCIENCE, 1998, 280 (5361) :298-301
[7]   The CTD code [J].
Buratowski, S .
NATURE STRUCTURAL BIOLOGY, 2003, 10 (09) :679-680
[8]   Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain [J].
Cho, EJ ;
Kobor, MS ;
Kim, M ;
Greenblatt, J ;
Buratowski, S .
GENES & DEVELOPMENT, 2001, 15 (24) :3319-3329
[9]   Mechanism and regulation of mRNA polyadenylation [J].
Colgan, DF ;
Manley, JL .
GENES & DEVELOPMENT, 1997, 11 (21) :2755-2766
[10]   A FUNCTIONAL MESSENGER-RNA POLYADENYLATION SIGNAL IS REQUIRED FOR TRANSCRIPTION TERMINATION BY RNA POLYMERASE-II [J].
CONNELLY, S ;
MANLEY, JL .
GENES & DEVELOPMENT, 1988, 2 (04) :440-452