On a convex acceleration of Newton's method

被引:16
作者
Ezquerro, JA [1 ]
Hernández, MA [1 ]
机构
[1] Univ La Rioja, Dept Math & Computat, Logrono, Spain
关键词
nonlinear equations; convex acceleration of Newton's method; Newton-Kantorovich assumptions; majorizing sequences;
D O I
10.1023/A:1021730118905
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this study, we use a convex acceleration of Newton's method (or super-Halley method) to approximate solutions of nonlinear equations. We provide sufficient convergence conditions for this method in three space settings: real line, complex plane, and Banach space. Several applications of our results are also provided.
引用
收藏
页码:311 / 326
页数:16
相关论文
共 15 条
[1]  
ALTMAN M, 1961, B ACAD POL SCI SM, V9, P633
[2]  
[Anonymous], ZB RAD PRIROD MAT M
[3]  
Argyros I. K., 1996, APPROXIMATION THEORY, V12, P78
[4]  
Argyros I.K., 1993, The Theory and Application of Iteration Methods
[5]   SOME METHODS FOR FINDING ERROR-BOUNDS FOR NEWTON-LIKE METHODS UNDER MILD DIFFERENTIABILITY CONDITIONS [J].
ARGYROS, IK .
ACTA MATHEMATICA HUNGARICA, 1993, 61 (3-4) :183-194
[6]  
ARGYROS IK, 1993, PUBL MATH-DEBRECEN, V43, P223
[7]  
ARGYROS IK, 1994, FUNCTIONES APPROXIMA, V23, P109
[8]   A LOCAL CONVERGENCE THEOREM FOR THE SUPER-HALLEY METHOD IN A BANACH-SPACE [J].
CHEN, D ;
ARGYROS, IK ;
QIAN, Q .
APPLIED MATHEMATICS LETTERS, 1994, 7 (05) :49-52
[9]   Accessibility of solutions by Newton's method [J].
Gutierrez, JM ;
Hernandez, MA ;
Salanova, MA .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1995, 57 (3-4) :239-247
[10]  
Hernandez Veron M. A., 1991, Numerische Mathematik, V59, P273, DOI 10.1007/BF01385780