Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA

被引:927
作者
Fan, CH
Plaxco, KW [1 ]
Heeger, AJ
机构
[1] Univ Calif Santa Barbara, Inst Polymers & Organ Solids, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA
[3] Univ Calif Santa Barbara, Biomol Sci & Engn Program, Santa Barbara, CA 93106 USA
[4] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[5] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA
关键词
D O I
10.1073/pnas.1633515100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We report a strategy for the reagentless transduction of DNA hybridization into a readily detectable electrochemical signal by means of a conformational change analogous to the optical molecular beacon approach. The strategy involves an electroactive, ferrocene-tagged DNA stem-loop structure that self-assembles onto a gold electrode by means of facile gold-thiol chemistry. Hybridization induces a large conformational change in this surface-confined DNA structure, which in turn significantly alters the electron-transfer tunneling distance between the electrode and the redoxable label. The resulting change in electron transfer efficiency is readily measured by cyclic voltammetry at target DNA concentrations as low as 10 pM. In contrast to existing optical approaches, an electrochemical DNA (E-DNA) sensor built on this strategy can detect femtomoles of target DNA without employing cumbersome and expensive optics, light sources, or photodetectors. In contrast to previously reported electrochemical approaches, the E-DNA sensor achieves this impressive sensitivity without the use of exogenous reagents and without sacrificing selectivity or reusability. The E-DNA sensor thus offers the promise of convenient, reusable detection of picomolar DNA.
引用
收藏
页码:9134 / 9137
页数:4
相关论文
共 49 条
  • [21] 2-8
  • [22] Electrochemical and vibrational spectroscopic characterization of self-assembled monolayers of 1,1′-disubstituted ferrocene derivatives on gold
    Han, SW
    Seo, H
    Chung, YK
    Kim, K
    [J]. LANGMUIR, 2000, 16 (24) : 9493 - 9500
  • [23] DNA microarray technology: Devices, systems, and applications
    Heller, MJ
    [J]. ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, 2002, 4 : 129 - 153
  • [24] Characterization of DNA probes immobilized on gold surfaces
    Herne, TM
    Tarlov, MJ
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (38) : 8916 - 8920
  • [25] Kinetics and mechanism of redox-coupled, long-range proton transfer in an iron-sulfur protein. Investigation by fast-scan protein-film voltammetry
    Hirst, J
    Duff, JLC
    Jameson, GNL
    Kemper, MA
    Burgess, BK
    Armstrong, FA
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (28) : 7085 - 7094
  • [26] Characterization of PNA and DNA immobilization and subsequent hybridization with DNA using acoustic-shear-wave attenuation measurements
    Höök, F
    Ray, A
    Nordén, B
    Kasemo, B
    [J]. LANGMUIR, 2001, 17 (26) : 8305 - 8312
  • [27] Ferrocene-oligonucleotide conjugates for electrochemical probing of DNA
    Ihara, T
    Maruo, Y
    Takenaka, S
    Takagi, M
    [J]. NUCLEIC ACIDS RESEARCH, 1996, 24 (21) : 4273 - 4280
  • [28] Single-base mismatch detection based on charge transduction through DNA
    Kelley, SO
    Boon, EM
    Barton, JK
    Jackson, NM
    Hill, MG
    [J]. NUCLEIC ACIDS RESEARCH, 1999, 27 (24) : 4830 - 4837
  • [29] Toward bioelectronics: Specific DNA recognition based on an oligonucleotide-functionalized polypyrrole
    KorriYoussoufi, H
    Garnier, F
    Srivastava, P
    Godillot, P
    Yassar, A
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (31) : 7388 - 7389
  • [30] Molecular beacons - Spectral genotyping of human alleles
    Kostrikis, LG
    Tyagi, S
    Mhlanga, MM
    Ho, DD
    Kramer, FR
    [J]. SCIENCE, 1998, 279 (5354) : 1228 - 1229