Computational design of a Zn2+ receptor that controls bacterial gene expression

被引:57
作者
Dwyer, MA [1 ]
Looger, LL [1 ]
Hellinga, HW [1 ]
机构
[1] Duke Univ, Dept Biochem, Durham, NC 27710 USA
关键词
D O I
10.1073/pnas.2032284100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The control of cellular physiology and gene expression in response to extracellular signals is a basic property of living systems. We have constructed a synthetic bacterial signal transduction pathway in which gene expression is controlled by extracellular Zn2+. In this system a computationally designed Zn2+-binding periplasmic receptor senses the extracellular solute and triggers a two-component signal transduction pathway via a chimeric transmembrane protein, resulting in transcriptional up-regulation of a beta-galactosidas a reporter gene. The Zn2+-binding site in the designed receptor is based on a four-coordinate, tetrahedral primary coordination sphere consisting of histidines and glutamates. In addition, mutations were introduced in a secondary coordination sphere to satisfy the residual hydrogen-bonding potential of the histidines coordinated I to the metal. The importance of the secondary shell interactions is demonstrated by their effect on metal affinity and selectivity, as well as protein stability. Three designed protein sequences, comprising two distinct metal-binding positions, were all shown to bind Zn2+ and to function in the cell-based assay, indicating the generality of the design methodology. These experiments demonstrate that biological systems can be manipulated with computationally designed proteins that have drastically alterec ligand-binding specificities, thereby extending the repertoire of genetic control by extracellular signals.
引用
收藏
页码:11255 / 11260
页数:6
相关论文
共 63 条
[1]  
[Anonymous], SCI STKE
[2]  
BASTY J, 2002, NATURE, V420, P224
[3]   TRANSMEMBRANE SIGNALING BY A HYBRID PROTEIN - COMMUNICATION FROM THE DOMAIN OF CHEMORECEPTOR TRG THAT RECOGNIZES SUGAR-BINDING PROTEINS TO THE KINASE/PHOSPHATASE DOMAIN OF OSMOSENSOR ENVZ [J].
BAUMGARTNER, JW ;
KIM, C ;
BRISSETTE, RE ;
INOUYE, M ;
PARK, C ;
HAZELBAUER, GL .
JOURNAL OF BACTERIOLOGY, 1994, 176 (04) :1157-1163
[4]  
BELLINGA HW, 1998, FOLD DES, V3, pR1
[5]   Rational design of nascent metalloenzymes [J].
Benson, DE ;
Wisz, MS ;
Hellinga, HW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (12) :6292-6297
[6]   Construction of a novel redox protein by rational design: Conversion of a disulfide bridge into a mononuclear iron-sulfur center [J].
Benson, DE ;
Wisz, MS ;
Liu, WT ;
Hellinga, HW .
BIOCHEMISTRY, 1998, 37 (20) :7070-7076
[7]   Converting a maltose receptor into a nascent binuclear copper oxygenase by computational design [J].
Benson, DE ;
Haddy, AE ;
Hellinga, HW .
BIOCHEMISTRY, 2002, 41 (09) :3262-3269
[8]   Design of bioelectronic interfaces by exploiting hinge-bending motions in proteins [J].
Benson, DE ;
Conrad, DW ;
de Lorimer, RM ;
Trammell, SA ;
Hellinga, HW .
SCIENCE, 2001, 293 (5535) :1641-1644
[9]   Unnatural ligands for engineered proteins: New tools for chemical genetics [J].
Bishop, A ;
Buzko, O ;
Heyeck-Dumas, S ;
Jung, I ;
Kraybill, B ;
Liu, Y ;
Shah, K ;
Ulrich, S ;
Witucki, L ;
Yang, F ;
Zhang, C ;
Shokat, KM .
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 2000, 29 :577-606
[10]   Multiple open forms of ribose-binding protein trace the path of its conformational change [J].
Björkman, AJ ;
Mowbray, SL .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 279 (03) :651-664