23S rRNA base pair 2057-2611 determines ketolide susceptibility and fitness cost of the macrolide resistance mutation 2058A→G

被引:64
作者
Pfister, P
Corti, N
Hobbie, S
Bruell, C
Zarivach, R
Yonath, A [1 ]
Böttger, EC
机构
[1] Weizmann Inst Sci, Dept Biol Struct, IL-76100 Rehovot, Israel
[2] Univ Zurich, Inst Med Mikrobiol, CH-8006 Zurich, Switzerland
关键词
antibiotics; ketolides; ribosomes; structure; conformation;
D O I
10.1073/pnas.0501598102
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The 23S rRNA A2058G alteration mediates macrolide, lincosamide, and streptogramin B resistance in the bacterial domain and determines the selectivity of macrolide antibiotics for eubacterial ribosomes, as opposed to eukaryotic ribosomes. However, this mutation is associated with a disparate resistance phenotype: It confers high-level resistance to ketolides in mycobacteria but only marginally affects ketolide susceptibility in streptococci. We used site-directed mutagenesis of nucleotides within domain V of 23S rRNA to study the molecular basis for this disparity. We show that mutational alteration of the polymorphic 2057-2611 base pair from A-U to G-C in isogenic mutants of Mycobacterium smegmatis significantly affects susceptibility to ketolides but does not influence susceptibility to other macrolide antibiotics. In addition, we provide evidence that the 2057-2611 polymorphism determines the fitness cost of the 23S rRNA A2058G resistance mutation. Supported by structural analysis, our results indicate that polymorphic nucleotides mediate the disparate phenotype of genotypically identical resistance mutations and provide an explanation for the large species differences in the epidemiology of defined drug resistance mutations.
引用
收藏
页码:5180 / 5185
页数:6
相关论文
共 54 条
[1]   SPECIFIC STRUCTURAL PROBING OF PLASMID-CODED RIBOSOMAL-RNAS FROM ESCHERICHIA-COLI [J].
AAGAARD, C ;
ROSENDAHL, G ;
DAM, M ;
POWERS, T ;
DOUTHWAITE, S .
BIOCHIMIE, 1991, 73 (12) :1439-1444
[2]   An Escherichia coli strain with all chromosomal rRNA operons inactivated:: Complete exchange of rRNA genes between bacteria [J].
Asai, T ;
Zaporojets, D ;
Squires, C ;
Squires, CL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (05) :1971-1976
[3]   Ribosomal antibiotics: structural basis for resistance, synergism and selectivity [J].
Auerbach, T ;
Bashan, A ;
Yonath, A .
TRENDS IN BIOTECHNOLOGY, 2004, 22 (11) :570-576
[4]   The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution [J].
Ban, N ;
Nissen, P ;
Hansen, J ;
Moore, PB ;
Steitz, TA .
SCIENCE, 2000, 289 (5481) :905-920
[5]   From peptide-bond formation to cotranslational folding: dynamic, regulatory and evolutionary aspects [J].
Baram, D ;
Yonath, A .
FEBS LETTERS, 2005, 579 (04) :948-954
[6]   Structural insight into the antibiotic action of telithromycin against resistant mutants [J].
Berisio, R ;
Harms, J ;
Schluenzen, F ;
Zarivach, R ;
Hansen, HAS ;
Fucini, P ;
Yonath, A .
JOURNAL OF BACTERIOLOGY, 2003, 185 (14) :4276-4279
[7]   Mutation frequency and biological cost of antibiotic resistance in Helicobacter pylori [J].
Björkholm, B ;
Sjölund, M ;
Falk, PG ;
Berg, OG ;
Engstrand, L ;
Andersson, DI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (25) :14607-14612
[8]   Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance [J].
Björkman, J ;
Nagaev, I ;
Berg, OG ;
Hughes, D ;
Andersson, DI .
SCIENCE, 2000, 287 (5457) :1479-1482
[9]   Fitness of antibiotic-resistant microorganisms and compensatory mutations [J].
Böttger, EC ;
Springer, B ;
Pletschette, M ;
Sander, P .
NATURE MEDICINE, 1998, 4 (12) :1343-1344
[10]   Structural basis for selectivity and toxicity of ribosomal antibiotics [J].
Böttger, EC ;
Springer, B ;
Prammananan, T ;
Kidan, Y ;
Sander, P .
EMBO REPORTS, 2001, 2 (04) :318-323