Randomly coloring graphs with lower bounds on girth and maximum degree

被引:29
作者
Dyer, M
Frieze, A [1 ]
机构
[1] Carnegie Mellon Univ, Dept Math, Pittsburgh, PA 15213 USA
[2] Univ Leeds, Sch Comp, Leeds LS2 9JT, W Yorkshire, England
关键词
D O I
10.1002/rsa.10087
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We consider the problem of generating a random q-coloring of a graph G = (V, E). We consider the simple Glauber Dynamics chain. We show that if the maximum degree Delta > c(1) ln n and the girth g > c(2)ln Delta (n = \V\) for sufficiently large c(1), c(2), then this chain mixes rapidly provided q/Delta > beta, where beta approximate to 1.763 is the root of beta = e(1/beta). For this class of graphs, this beats the 11Delta/6 bound of Vigoda [E. Vigoda, Improved bounds for sampling colorings, Proc 40th Annu IEEE Symp Foundations of Computer Science, 1999, pp. 51-59] for general graphs. We extend the result to random graphs. (C) 2003 Wiley Periodicals, Inc.
引用
收藏
页码:167 / 179
页数:13
相关论文
共 15 条
[1]  
ALON N, 1992, PROBALISTIC METHOD
[2]  
[Anonymous], 1938, REV MATH LUNION INTE
[3]   Path coupling: A technique for proving rapid mixing in Markov chains [J].
Bubley, R ;
Dyer, M .
38TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1997, :223-231
[4]   A RANDOM POLYNOMIAL-TIME ALGORITHM FOR APPROXIMATING THE VOLUME OF CONVEX-BODIES [J].
DYER, M ;
FRIEZE, A ;
KANNAN, R .
JOURNAL OF THE ACM, 1991, 38 (01) :1-17
[5]  
Dyer M, 2000, PROCEEDINGS OF THE ELEVENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P616
[7]  
Janson S, 2000, WIL INT S D, DOI 10.1002/9781118032718
[8]   A VERY SIMPLE ALGORITHM FOR ESTIMATING THE NUMBER OF K-COLORINGS OF A LOW-DEGREE GRAPH [J].
JERRUM, M .
RANDOM STRUCTURES & ALGORITHMS, 1995, 7 (02) :157-165
[9]  
Jerrum M., 2003, LEC MATH
[10]  
Jerrum M., 2001, P 33 ANN ACM S THEOR, P712