共 45 条
Improved Peptide Identification by Targeted Fragmentation Using CID, HCD and ETD on an LTQ-Orbitrap Velos
被引:240
作者:
Frese, Christian K.
[1
,2
,3
]
Altelaar, A. F. Maarten
[1
,2
,3
]
Hennrich, Marco L.
[1
,2
,3
]
Nolting, Dirk
[4
]
Zeller, Martin
[4
]
Griep-Raming, Jens
[4
]
Heck, Albert J. R.
[1
,2
,3
]
Mohammed, Shabaz
[1
,2
,3
]
机构:
[1] Univ Utrecht, Bijvoet Ctr Biomol Res, Biomol Mass Spectrometry & Prote Grp, NL-3584 CH Utrecht, Netherlands
[2] Netherlands Prote Ctr, NL-3584 CH Utrecht, Netherlands
[3] Univ Utrecht, Utrecht Inst Pharmaceut Sci, NL-3584 CH Utrecht, Netherlands
[4] Thermo Fisher Sci, Bremen, Germany
关键词:
ETD;
Orbitrap Velos;
HCD;
data-dependent decision tree;
peptide fragmentation;
ELECTRON-TRANSFER DISSOCIATION;
CAPTURE DISSOCIATION;
ION-TRAP;
MASS-SPECTROMETRY;
ION/ION REACTIONS;
SPECTRA;
EFFICIENCY;
ACCURACY;
CID/ETD;
D O I:
10.1021/pr1011729
中图分类号:
Q5 [生物化学];
学科分类号:
071010 ;
081704 ;
摘要:
Over the past decade peptide sequencing by collision induced dissociation (CID) has become the method of choice in mass spectrometry-based proteomics. The development of alternative fragmentation techniques such as electron transfer dissociation (ETD) has extended the possibilities within tandem mass spectrometry. Recent advances in instrumentation allow peptide fragment ions to be detected with high speed and sensitivity (e.g., in a 2D or 3D ion trap) or at high resolution and high mass accuracy (e.g., an Orbitrap or a ToF). Here, we describe a comprehensive experimental comparison of using ETD, ion-trap CID, and beam type CID (HCD) in combination with either linear ion trap or Orbitrap readout for the large-scale analysis of tryptic peptides. We investigate which combination of fragmentation technique and mass analyzer provides the best performance for the analysis of distinct peptide populations such as N-acetylated, phosphorylated, and tryptic peptides with up to two missed cleavages. We found that HCD provides more peptide identifications than CID and ETD for doubly charged peptides. In terms of Mascot score, ETD FT outperforms the other techniques for peptides with charge states higher than 2. Our data shows that there is a trade-off between spectral quality and speed when using the Orbitrap for fragment ion detection. We conclude that a decision-tree regulated combination of higher-energy collisional dissociation (HCD) and ETD can improve the average Mascot score.
引用
收藏
页码:2377 / 2388
页数:12
相关论文