A non-Maxwellian steady distribution for one-dimensional granular media

被引:116
作者
Benedetto, D [1 ]
Caglioti, E
Carrillo, JA
Pulvirenti, M
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
[2] Univ Granada, Dept Matemat Aplicada, Granada, Spain
关键词
granular media; inelastic collisions; kinetic equations; Fokker-Planck;
D O I
10.1023/A:1023032000560
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a nonlinear Fokker-Planck equation for a one-dimensional granular medium. This is a kinetic approximation of a system of nearly elastic particles in a thermal bath. We prove that homogeneous solutions tend asymptotically in time toward a unique non-Maxwellian stationary distribution.
引用
收藏
页码:979 / 990
页数:12
相关论文
共 18 条
[1]  
ARNOLD A, IN PRESS TRANSPORT T
[2]  
Benedetto D, 1997, ESAIM-MATH MODEL NUM, V31, P615
[3]  
BENEDETTO D, UNPUB
[4]   ONE-DIMENSIONAL BOUNCE OF INELASTICALLY COLLIDING MARBLES ON A WALL [J].
BERNU, B ;
MAZIGHI, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (24) :5745-5754
[5]   Asymptotic behavior of an initial-boundary value problem for the Vlasov-Poisson-Fokker-Planck system [J].
Bonilla, LL ;
Carrillo, JA ;
Soler, J .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1997, 57 (05) :1343-1372
[6]  
Bouchut F., 1995, Differ. Integral Equ, V8, P487
[7]   RAPID GRANULAR FLOWS [J].
CAMPBELL, CS .
ANNUAL REVIEW OF FLUID MECHANICS, 1990, 22 :57-92
[8]  
CARRILLO JA, IN PRESS MATH METH A
[9]   INELASTIC-COLLISIONS OF 3 PARTICLES ON A LINE AS A 2-DIMENSIONAL BILLIARD [J].
CONSTANTIN, P ;
GROSSMAN, E ;
MUNGAN, M .
PHYSICA D, 1995, 83 (04) :409-420
[10]   BREAKDOWN OF HYDRODYNAMICS IN A ONE-DIMENSIONAL SYSTEM OF INELASTIC PARTICLES [J].
DU, YS ;
LI, H ;
KADANOFF, LP .
PHYSICAL REVIEW LETTERS, 1995, 74 (08) :1268-1271