Asymptotic behavior of an initial-boundary value problem for the Vlasov-Poisson-Fokker-Planck system

被引:48
作者
Bonilla, LL [1 ]
Carrillo, JA [1 ]
Soler, J [1 ]
机构
[1] UNIV GRANADA,FAC CIENCIAS,DEPT MATEMAT APLICADA,E-18071 GRANADA,SPAIN
关键词
boundary conditions for kinetic equations; Vlasov-Poisson-Fokker-Planck system; asymptotic behavior;
D O I
10.1137/S0036139995291544
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The asymptotic behavior for the Vlasov-Poisson-Fokker-Planck system in bounded domains is analyzed in this paper. Boundary conditions defined by a scattering kernel are considered. It is proven that the distribution of particles tends for large time to a Maxwellian determined by the solution of the Poisson-Boltzmann equation with Dirichlet boundary condition. In the proof of the main result, the conservation law of mass and the balance of energy and entropy identities are rigorously derived. An important argument in the proof is to use a Lyapunov-type functional related to these physical quantities.
引用
收藏
页码:1343 / 1372
页数:30
相关论文
共 40 条
[1]  
Abdallah N., 1994, MATH METHOD APPL SCI, V17, P451
[2]   A SHARP INEQUALITY OF MOSER,J. FOR HIGHER-ORDER DERIVATIVES [J].
ADAMS, DR .
ANNALS OF MATHEMATICS, 1988, 128 (02) :385-398
[3]   WEAK SOLUTIONS OF THE VLASOV-POISSON INITIAL-BOUNDARY VALUE-PROBLEM [J].
ALEXANDRE, R .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1993, 16 (08) :587-607
[4]  
[Anonymous], 1988, ANAL MATH CALCUL NUM
[5]  
Arnold A., 1996, Transport Theory and Statistical Physics, V25, P733, DOI 10.1080/00411459608203544
[6]   EQUILIBRIUM PROPERTIES OF THE VLASOV FUNCTIONAL - THE GENERALIZED POISSON-BOLTZMANN-EMDEN EQUATION [J].
BAVAUD, F .
REVIEWS OF MODERN PHYSICS, 1991, 63 (01) :129-149
[7]   DYNAMICS OF A SOFT-SPIN VANHEMMEN MODEL .1. PHASE AND BIFURCATION DIAGRAMS FOR STATIONARY DISTRIBUTIONS [J].
BONILLA, LL ;
CASADO, JM .
JOURNAL OF STATISTICAL PHYSICS, 1989, 56 (1-2) :113-125
[8]   EXISTENCE AND UNIQUENESS OF A GLOBAL SMOOTH SOLUTION FOR THE VLASOV-POISSON-FOKKER-PLANCK SYSTEM IN 3 DIMENSIONS [J].
BOUCHUT, F .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 111 (01) :239-258
[9]   SMOOTHING EFFECT FOR THE NONLINEAR VLASOV-POISSON-FOKKER-PLANCK SYSTEM [J].
BOUCHUT, F .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 122 (02) :225-238
[10]  
Bouchut F., 1995, Differ. Integral Equ, V8, P487